BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29351284)

  • 1. Magnetic resonance angiography with compressed sensing: An evaluation of moyamoya disease.
    Yamamoto T; Okada T; Fushimi Y; Yamamoto A; Fujimoto K; Okuchi S; Fukutomi H; Takahashi JC; Funaki T; Miyamoto S; Stalder AF; Natsuaki Y; Speier P; Togashi K
    PLoS One; 2018; 13(1):e0189493. PubMed ID: 29351284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of 7.0- and 3.0-T MRI and MRA in ischemic-type moyamoya disease: preliminary experience.
    Deng X; Zhang Z; Zhang Y; Zhang D; Wang R; Ye X; Xu L; Wang B; Wang K; Zhao J
    J Neurosurg; 2016 Jun; 124(6):1716-25. PubMed ID: 26544772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution compressed sensing time-of-flight MR angiography outperforms CT angiography for evaluating patients with Moyamoya disease after surgical revascularization.
    Ren S; Wu W; Su C; Zhu Q; Schmidt M; Sun Y; Forman C; Speier P; Hong X; Lu S
    BMC Med Imaging; 2022 Apr; 22(1):64. PubMed ID: 35387607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel application of four-dimensional magnetic resonance angiography using an arterial spin labeling technique for noninvasive diagnosis of Moyamoya disease.
    Uchino H; Ito M; Fujima N; Kazumata K; Yamazaki K; Nakayama N; Kuroda S; Houkin K
    Clin Neurol Neurosurg; 2015 Oct; 137():105-11. PubMed ID: 26185929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of cerebral arteriovenous shunts: a comparison of parallel imaging time-of-flight magnetic resonance angiography (TOF-MRA) and compressed sensing TOF-MRA to digital subtraction angiography.
    Sakata A; Fushimi Y; Okada T; Nakajima S; Hinoda T; Speier P; Schmidt M; Forman C; Yoshida K; Kataoka H; Miyamoto S; Nakamoto Y
    Neuroradiology; 2021 Jun; 63(6):879-887. PubMed ID: 33063222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical evaluation of time-of-flight MR angiography with sparse undersampling and iterative reconstruction for cerebral aneurysms.
    Fushimi Y; Okada T; Kikuchi T; Yamamoto A; Okada T; Yamamoto T; Schmidt M; Yoshida K; Miyamoto S; Togashi K
    NMR Biomed; 2017 Nov; 30(11):. PubMed ID: 28796397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical Evaluation of Highly Accelerated Compressed Sensing Time-of-Flight MR Angiography for Intracranial Arterial Stenosis.
    Lu SS; Qi M; Zhang X; Mu XH; Schmidt M; Sun Y; Forman C; Speier P; Hong XN
    AJNR Am J Neuroradiol; 2018 Oct; 39(10):1833-1838. PubMed ID: 30213812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast carotid artery MR angiography with compressed sensing based three-dimensional time-of-flight sequence.
    Li B; Li H; Dong L; Huang G
    Magn Reson Imaging; 2017 Nov; 43():129-135. PubMed ID: 28734956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Intracranial Vessel Imaging With Non-Cartesian Spiral 3-Dimensional Time-of-Flight Magnetic Resonance Angiography at 1.5 T: An In Vitro and Clinical Study in Healthy Volunteers.
    Sartoretti T; van Smoorenburg L; Sartoretti E; Schwenk Á; Binkert CA; Kulcsár Z; Becker AS; Graf N; Wyss M; Sartoretti-Schefer S
    Invest Radiol; 2020 May; 55(5):293-303. PubMed ID: 31895223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressed Sensing 3-Dimensional Time-of-Flight Magnetic Resonance Angiography for Cerebral Aneurysms: Optimization and Evaluation.
    Fushimi Y; Fujimoto K; Okada T; Yamamoto A; Tanaka T; Kikuchi T; Miyamoto S; Togashi K
    Invest Radiol; 2016 Apr; 51(4):228-35. PubMed ID: 26606551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of extracranial-intracranial bypass in Moyamoya disease using 3T time-of-flight MR angiography: comparison with CT angiography.
    Chen Q; Qi R; Cheng X; Zhou C; Luo S; Ni L; Huang W
    Vasa; 2014 Jul; 43(4):278-83. PubMed ID: 25007906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of 7T and 3T MRI in patients with moyamoya disease.
    Oh BH; Moon HC; Baek HM; Lee YJ; Kim SW; Jeon YJ; Lee GS; Kim HR; Choi JH; Min KS; Lee MS; Kim YG; Kim DH; Kim WS; Park YS
    Magn Reson Imaging; 2017 Apr; 37():134-138. PubMed ID: 27899331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High resolution time-of-flight MR-angiography at 7 T exploiting VERSE saturation, compressed sensing and segmentation.
    Meixner CR; Liebig P; Speier P; Forman C; Hensel B; Schmidt M; Saake M; Uder M; Doerfler A; Heidemann RM; Schmitter S; Nagel AM
    Magn Reson Imaging; 2019 Nov; 63():193-204. PubMed ID: 31434005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated Time-of-Flight Magnetic Resonance Angiography with Sparse Undersampling and Iterative Reconstruction for the Evaluation of Intracranial Arteries.
    Tang H; Hu N; Yuan Y; Xia C; Liu X; Zuo P; Stalder AF; Schmidt M; Zhou X; Song B; Sun J
    Korean J Radiol; 2019 Feb; 20(2):265-274. PubMed ID: 30672166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of 3.0- and 1.5-T three-dimensional time-of-flight MR angiography in moyamoya disease: preliminary experience.
    Fushimi Y; Miki Y; Kikuta K; Okada T; Kanagaki M; Yamamoto A; Nozaki K; Hashimoto N; Hanakawa T; Fukuyama H; Togashi K
    Radiology; 2006 Apr; 239(1):232-7. PubMed ID: 16467209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnosis of moyamoya disease using 3-T MRI and MRA: value of cisternal moyamoya vessels.
    Sawada T; Yamamoto A; Miki Y; Kikuta K; Okada T; Kanagaki M; Kasahara S; Miyamoto S; Takahashi JC; Fukuyama H; Togashi K
    Neuroradiology; 2012 Oct; 54(10):1089-97. PubMed ID: 22349623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Moyamoya disease with 3.0-T magnetic resonance angiography and magnetic resonance imaging versus conventional angiography.
    Jin Q; Noguchi T; Irie H; Kawashima M; Nishihara M; Takase Y; Gong H; Uchino A; Matsushima T; Kudo S
    Neurol Med Chir (Tokyo); 2011; 51(3):195-200. PubMed ID: 21441735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-contrast compressed sensing whole-heart coronary magnetic resonance angiography at 3T: A comparison with conventional imaging.
    Nakamura M; Kido T; Kido T; Watanabe K; Schmidt M; Forman C; Mochizuki T
    Eur J Radiol; 2018 Jul; 104():43-48. PubMed ID: 29857865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid of opposite-contrast magnetic resonance angiography of the brain by combining time-of-flight and black blood sequences: its value in moyamoya disease.
    Tsuchiya K; Yoshida M; Imai M; Nitatori T; Kimura T; Ikedo M; Takemoto S
    J Comput Assist Tomogr; 2010; 34(2):242-6. PubMed ID: 20351513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical feasibility of ultrafast intracranial vessel imaging with non-Cartesian spiral 3D time-of-flight MR angiography at 1.5T: An intra-individual comparison study.
    Sartoretti T; Sartoretti E; Schwenk Á; van Smoorenburg L; Mannil M; Euler A; Becker AS; Alfieri A; Najafi A; Binkert CA; Wyss M; Sartoretti-Schefer S
    PLoS One; 2020; 15(4):e0232372. PubMed ID: 32348366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.