BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29351374)

  • 1. Fast Dynamic Docking Guided by Adaptive Electrostatic Bias: The MD-Binding Approach.
    Spitaleri A; Decherchi S; Cavalli A; Rocchia W
    J Chem Theory Comput; 2018 Mar; 14(3):1727-1736. PubMed ID: 29351374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Docking: A Paradigm Shift in Computational Drug Discovery.
    Gioia D; Bertazzo M; Recanatini M; Masetti M; Cavalli A
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29165360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully Flexible Docking via Reaction-Coordinate-Independent Molecular Dynamics Simulations.
    Bertazzo M; Bernetti M; Recanatini M; Masetti M; Cavalli A
    J Chem Inf Model; 2018 Feb; 58(2):490-500. PubMed ID: 29378136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the Stability of Ligand Binding Modes to Proteins by Molecular Dynamics Simulations: A Cross-docking Study.
    Liu K; Kokubo H
    J Chem Inf Model; 2017 Oct; 57(10):2514-2522. PubMed ID: 28902511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations.
    Liu K; Watanabe E; Kokubo H
    J Comput Aided Mol Des; 2017 Feb; 31(2):201-211. PubMed ID: 28074360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Protein-Ligand Binding Poses via a Combination of Induced Fit Docking and Metadynamics Simulations.
    Clark AJ; Tiwary P; Borrelli K; Feng S; Miller EB; Abel R; Friesner RA; Berne BJ
    J Chem Theory Comput; 2016 Jun; 12(6):2990-8. PubMed ID: 27145262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of molecular dynamics on drug design: applications for the characterization of ligand-macromolecule complexes.
    Mortier J; Rakers C; Bermudez M; Murgueitio MS; Riniker S; Wolber G
    Drug Discov Today; 2015 Jun; 20(6):686-702. PubMed ID: 25615716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cosolvent-Based Molecular Dynamics for Ensemble Docking: Practical Method for Generating Druggable Protein Conformations.
    Uehara S; Tanaka S
    J Chem Inf Model; 2017 Apr; 57(4):742-756. PubMed ID: 28388074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bridging molecular docking to membrane molecular dynamics to investigate GPCR-ligand recognition: the human A₂A adenosine receptor as a key study.
    Sabbadin D; Ciancetta A; Moro S
    J Chem Inf Model; 2014 Jan; 54(1):169-83. PubMed ID: 24359090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Characterization of the Binding and Unbinding of Millimolar Drug Fragments with Molecular Dynamics Simulations.
    Pan AC; Xu H; Palpant T; Shaw DE
    J Chem Theory Comput; 2017 Jul; 13(7):3372-3377. PubMed ID: 28582625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ensemble-based docking using biased molecular dynamics.
    Campbell AJ; Lamb ML; Joseph-McCarthy D
    J Chem Inf Model; 2014 Jul; 54(7):2127-38. PubMed ID: 24881672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Molecular Dynamics to Expand Docking Program's Exploratory Capabilities and to Evaluate Its Predictions.
    Kasprzak WK; Shapiro BA
    Methods Mol Biol; 2023; 2568():75-101. PubMed ID: 36227563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning accelerates MD-based binding pose prediction between ligands and proteins.
    Terayama K; Iwata H; Araki M; Okuno Y; Tsuda K
    Bioinformatics; 2018 Mar; 34(5):770-778. PubMed ID: 29040432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvents to Fragments to Drugs: MD Applications in Drug Design.
    Defelipe LA; Arcon JP; Modenutti CP; Marti MA; Turjanski AG; Barril X
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30544890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling Binding with Large Conformational Changes: Key Points in Ensemble-Docking Approaches.
    Motta S; Bonati L
    J Chem Inf Model; 2017 Jul; 57(7):1563-1578. PubMed ID: 28616990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of water molecules in computational drug design.
    de Beer SB; Vermeulen NP; Oostenbrink C
    Curr Top Med Chem; 2010; 10(1):55-66. PubMed ID: 19929830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling side-chains using molecular dynamics improve recognition of binding region in CAPRI targets.
    Camacho CJ
    Proteins; 2005 Aug; 60(2):245-51. PubMed ID: 15981253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.