These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 29351565)

  • 41. A nuclear envelope protein linking nuclear pore basket assembly, SUMO protease regulation, and mRNA surveillance.
    Lewis A; Felberbaum R; Hochstrasser M
    J Cell Biol; 2007 Aug; 178(5):813-27. PubMed ID: 17724121
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineered SUMO/protease system identifies Pdr6 as a bidirectional nuclear transport receptor.
    Vera Rodriguez A; Frey S; Görlich D
    J Cell Biol; 2019 Jun; 218(6):2006-2020. PubMed ID: 31023724
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recruitment of a SUMO isopeptidase to rDNA stabilizes silencing complexes by opposing SUMO targeted ubiquitin ligase activity.
    Liang J; Singh N; Carlson CR; Albuquerque CP; Corbett KD; Zhou H
    Genes Dev; 2017 Apr; 31(8):802-815. PubMed ID: 28487408
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of sumoylated proteins by systematic immunoprecipitation of the budding yeast proteome.
    Wykoff DD; O'Shea EK
    Mol Cell Proteomics; 2005 Jan; 4(1):73-83. PubMed ID: 15596868
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Isoform-specific monobody inhibitors of small ubiquitin-related modifiers engineered using structure-guided library design.
    Gilbreth RN; Truong K; Madu I; Koide A; Wojcik JB; Li NS; Piccirilli JA; Chen Y; Koide S
    Proc Natl Acad Sci U S A; 2011 May; 108(19):7751-6. PubMed ID: 21518904
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The 2 microm plasmid causes cell death in Saccharomyces cerevisiae with a mutation in Ulp1 protease.
    Dobson MJ; Pickett AJ; Velmurugan S; Pinder JB; Barrett LA; Jayaram M; Chew JS
    Mol Cell Biol; 2005 May; 25(10):4299-310. PubMed ID: 15870298
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure of a SUMO-binding-motif mimic bound to Smt3p-Ubc9p: conservation of a non-covalent ubiquitin-like protein-E2 complex as a platform for selective interactions within a SUMO pathway.
    Duda DM; van Waardenburg RC; Borg LA; McGarity S; Nourse A; Waddell MB; Bjornsti MA; Schulman BA
    J Mol Biol; 2007 Jun; 369(3):619-30. PubMed ID: 17475278
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of Substrates of Protein-Group SUMOylation.
    Psakhye I; Jentsch S
    Methods Mol Biol; 2016; 1475():219-31. PubMed ID: 27631809
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation.
    Xie Y; Kerscher O; Kroetz MB; McConchie HF; Sung P; Hochstrasser M
    J Biol Chem; 2007 Nov; 282(47):34176-84. PubMed ID: 17848550
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structures of the Karyopherins Kap121p and Kap60p Bound to the Nuclear Pore-Targeting Domain of the SUMO Protease Ulp1p.
    Hirano H; Kobayashi J; Matsuura Y
    J Mol Biol; 2017 Jan; 429(2):249-260. PubMed ID: 27939291
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tools to Study SUMO Conjugation in Caenorhabditis elegans.
    Pelisch F; Hay RT
    Methods Mol Biol; 2016; 1475():233-56. PubMed ID: 27631810
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The nuclear pore regulates GAL1 gene transcription by controlling the localization of the SUMO protease Ulp1.
    Texari L; Dieppois G; Vinciguerra P; Contreras MP; Groner A; Letourneau A; Stutz F
    Mol Cell; 2013 Sep; 51(6):807-18. PubMed ID: 24074957
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Drosophila Ulp1, a nuclear pore-associated SUMO protease, prevents accumulation of cytoplasmic SUMO conjugates.
    Smith M; Bhaskar V; Fernandez J; Courey AJ
    J Biol Chem; 2004 Oct; 279(42):43805-14. PubMed ID: 15294908
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quality control of a transcriptional regulator by SUMO-targeted degradation.
    Wang Z; Prelich G
    Mol Cell Biol; 2009 Apr; 29(7):1694-706. PubMed ID: 19139279
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SUMO-targeted ubiquitin ligases in genome stability.
    Prudden J; Pebernard S; Raffa G; Slavin DA; Perry JJ; Tainer JA; McGowan CH; Boddy MN
    EMBO J; 2007 Sep; 26(18):4089-101. PubMed ID: 17762865
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The
    Bea A; Kröber-Boncardo C; Sandhu M; Brinker C; Clos J
    Genes (Basel); 2020 Oct; 11(10):. PubMed ID: 33066659
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Noncovalent structure of SENP1 in complex with SUMO2.
    Ambaye ND
    Acta Crystallogr F Struct Biol Commun; 2019 May; 75(Pt 5):332-339. PubMed ID: 31045562
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SUMO Pathway Modulation of Regulatory Protein Binding at the Ribosomal DNA Locus in Saccharomyces cerevisiae.
    Gillies J; Hickey CM; Su D; Wu Z; Peng J; Hochstrasser M
    Genetics; 2016 Apr; 202(4):1377-94. PubMed ID: 26837752
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Concepts and Methodologies to Study Protein SUMOylation: An Overview.
    Matunis MJ; Rodriguez MS
    Methods Mol Biol; 2016; 1475():3-22. PubMed ID: 27631794
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice.
    Park HC; Kim H; Koo SC; Park HJ; Cheong MS; Hong H; Baek D; Chung WS; Kim DH; Bressan RA; Lee SY; Bohnert HJ; Yun DJ
    Plant Cell Environ; 2010 Nov; 33(11):1923-34. PubMed ID: 20561251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.