These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 29351586)

  • 1. Computational deconvolution of transcriptomics data from mixed cell populations.
    Avila Cobos F; Vandesompele J; Mestdagh P; De Preter K
    Bioinformatics; 2018 Jun; 34(11):1969-1979. PubMed ID: 29351586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering.
    Specht AT; Li J
    Bioinformatics; 2017 Mar; 33(5):764-766. PubMed ID: 27993778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing transcriptomic heterogeneity of single-cell RNASeq data by bulk-level gene expression data.
    Tiong KL; Luzhbin D; Yeang CH
    BMC Bioinformatics; 2024 Jun; 25(1):209. PubMed ID: 38867193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics.
    Sang-Aram C; Browaeys R; Seurinck R; Saeys Y
    Elife; 2024 May; 12():. PubMed ID: 38787371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical Modeling and Deconvolution of Molecular Heterogeneity Identifies Novel Subpopulations in Complex Tissues.
    Wang N; Chen L; Wang Y
    Methods Mol Biol; 2018; 1751():223-236. PubMed ID: 29508301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NNICE: a deep quantile neural network algorithm for expression deconvolution.
    Jin YW; Hu P; Liu Q
    Sci Rep; 2024 Jun; 14(1):14040. PubMed ID: 38890415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures.
    Zaitsev K; Bambouskova M; Swain A; Artyomov MN
    Nat Commun; 2019 May; 10(1):2209. PubMed ID: 31101809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking of cell type deconvolution pipelines for transcriptomics data.
    Avila Cobos F; Alquicira-Hernandez J; Powell JE; Mestdagh P; De Preter K
    Nat Commun; 2020 Nov; 11(1):5650. PubMed ID: 33159064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective methods for bulk RNA-seq deconvolution using scnRNA-seq transcriptomes.
    Cobos FA; Panah MJN; Epps J; Long X; Man TK; Chiu HS; Chomsky E; Kiner E; Krueger MJ; di Bernardo D; Voloch L; Molenaar J; van Hooff SR; Westermann F; Jansky S; Redell ML; Mestdagh P; Sumazin P
    Genome Biol; 2023 Aug; 24(1):177. PubMed ID: 37528411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deconvolving the contributions of cell-type heterogeneity on cortical gene expression.
    Patrick E; Taga M; Ergun A; Ng B; Casazza W; Cimpean M; Yung C; Schneider JA; Bennett DA; Gaiteri C; De Jager PL; Bradshaw EM; Mostafavi S
    PLoS Comput Biol; 2020 Aug; 16(8):e1008120. PubMed ID: 32804935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SimBu: bias-aware simulation of bulk RNA-seq data with variable cell-type composition.
    Dietrich A; Sturm G; Merotto L; Marini F; Finotello F; List M
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii141-ii147. PubMed ID: 36124800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational de novo discovery of distinguishing genes for biological processes and cell types in complex tissues.
    Newberg LA; Chen X; Kodira CD; Zavodszky MI
    PLoS One; 2018; 13(3):e0193067. PubMed ID: 29494600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data.
    Gong T; Szustakowski JD
    Bioinformatics; 2013 Apr; 29(8):1083-5. PubMed ID: 23428642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data.
    Kang K; Meng Q; Shats I; Umbach DM; Li M; Li Y; Li X; Li L
    PLoS Comput Biol; 2019 Dec; 15(12):e1007510. PubMed ID: 31790389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Falco: a quick and flexible single-cell RNA-seq processing framework on the cloud.
    Yang A; Troup M; Lin P; Ho JW
    Bioinformatics; 2017 Mar; 33(5):767-769. PubMed ID: 28025200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of computational algorithms to deconvolve heterogeneous bulk ovarian tumor tissue depends on experimental factors.
    Hippen AA; Omran DK; Weber LM; Jung E; Drapkin R; Doherty JA; Hicks SC; Greene CS
    Genome Biol; 2023 Oct; 24(1):239. PubMed ID: 37864274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. imply: improving cell-type deconvolution accuracy using personalized reference profiles.
    Meng G; Pan Y; Tang W; Zhang L; Cui Y; Schumacher FR; Wang M; Wang R; He S; Krischer J; Li Q; Feng H
    Genome Med; 2024 Apr; 16(1):65. PubMed ID: 38685057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges and opportunities to computationally deconvolve heterogeneous tissue with varying cell sizes using single-cell RNA-sequencing datasets.
    Maden SK; Kwon SH; Huuki-Myers LA; Collado-Torres L; Hicks SC; Maynard KR
    Genome Biol; 2023 Dec; 24(1):288. PubMed ID: 38098055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: a case study.
    Gaujoux R; Seoighe C
    Infect Genet Evol; 2012 Jul; 12(5):913-21. PubMed ID: 21930246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational expression deconvolution in a complex mammalian organ.
    Wang M; Master SR; Chodosh LA
    BMC Bioinformatics; 2006 Jul; 7():328. PubMed ID: 16817968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.