These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29351669)

  • 1. How Pairwise Coevolutionary Models Capture the Collective Residue Variability in Proteins?
    Figliuzzi M; Barrat-Charlaix P; Weigt M
    Mol Biol Evol; 2018 Apr; 35(4):1018-1027. PubMed ID: 29351669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct coevolutionary couplings reflect biophysical residue interactions in proteins.
    Coucke A; Uguzzoni G; Oteri F; Cocco S; Monasson R; Weigt M
    J Chem Phys; 2016 Nov; 145(17):174102. PubMed ID: 27825220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct-coupling analysis of residue coevolution captures native contacts across many protein families.
    Morcos F; Pagnani A; Lunt B; Bertolino A; Marks DS; Sander C; Zecchina R; Onuchic JN; Hwa T; Weigt M
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):E1293-301. PubMed ID: 22106262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous identification of specifically interacting paralogs and interprotein contacts by direct coupling analysis.
    Gueudré T; Baldassi C; Zamparo M; Weigt M; Pagnani A
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12186-12191. PubMed ID: 27729520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coevolutionary Signals and Structure-Based Models for the Prediction of Protein Native Conformations.
    Dos Santos RN; Jiang X; Martínez L; Morcos F
    Methods Mol Biol; 2019; 1851():83-103. PubMed ID: 30298393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of sequence motifs and generative Hopfield-Potts models for protein families.
    Shimagaki K; Weigt M
    Phys Rev E; 2019 Sep; 100(3-1):032128. PubMed ID: 31639992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [From sequence variability to structural and functional prediction: modeling of homologous protein families].
    Barrat-Charlaix P; Weigt M
    Biol Aujourdhui; 2017; 211(3):239-244. PubMed ID: 29412135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic protein alignments by CCMgen quantify noise in residue-residue contact prediction.
    Vorberg S; Seemayer S; Söding J
    PLoS Comput Biol; 2018 Nov; 14(11):e1006526. PubMed ID: 30395601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing sequence-dependent protein models using coevolutionary information.
    Cheng RR; Raghunathan M; Noel JK; Onuchic JN
    Protein Sci; 2016 Jan; 25(1):111-22. PubMed ID: 26223372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication.
    Stetz G; Verkhivker GM
    PLoS Comput Biol; 2017 Jan; 13(1):e1005299. PubMed ID: 28095400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners.
    Baldassi C; Zamparo M; Feinauer C; Procaccini A; Zecchina R; Weigt M; Pagnani A
    PLoS One; 2014; 9(3):e92721. PubMed ID: 24663061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimeric interactions and complex formation using direct coevolutionary couplings.
    dos Santos RN; Morcos F; Jana B; Andricopulo AD; Onuchic JN
    Sci Rep; 2015 Sep; 5():13652. PubMed ID: 26338201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conservation of coevolving protein interfaces bridges prokaryote-eukaryote homologies in the twilight zone.
    Rodriguez-Rivas J; Marsili S; Juan D; Valencia A
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):15018-15023. PubMed ID: 27965389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphical models of residue coupling in protein families.
    Thomas J; Ramakrishnan N; Bailey-Kellogg C
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(2):183-97. PubMed ID: 18451428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid positions subject to multiple coevolutionary constraints can be robustly identified by their eigenvector network centrality scores.
    Parente DJ; Ray JC; Swint-Kruse L
    Proteins; 2015 Dec; 83(12):2293-306. PubMed ID: 26503808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlated mutations and residue contacts in proteins.
    Göbel U; Sander C; Schneider R; Valencia A
    Proteins; 1994 Apr; 18(4):309-17. PubMed ID: 8208723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct coupling analysis for protein contact prediction.
    Morcos F; Hwa T; Onuchic JN; Weigt M
    Methods Mol Biol; 2014; 1137():55-70. PubMed ID: 24573474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of contact residue pairs based on co-substitution between sites in protein structures.
    Miyazawa S
    PLoS One; 2013; 8(1):e54252. PubMed ID: 23342110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the effect of phylogenetic correlations in coevolution-based contact prediction in proteins.
    Rodriguez Horta E; Weigt M
    PLoS Comput Biol; 2021 May; 17(5):e1008957. PubMed ID: 34029316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.