These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 29351989)
1. Iterative random forests to discover predictive and stable high-order interactions. Basu S; Kumbier K; Brown JB; Yu B Proc Natl Acad Sci U S A; 2018 Feb; 115(8):1943-1948. PubMed ID: 29351989 [TBL] [Abstract][Full Text] [Related]
2. Provable Boolean interaction recovery from tree ensemble obtained via random forests. Behr M; Wang Y; Li X; Yu B Proc Natl Acad Sci U S A; 2022 May; 119(22):e2118636119. PubMed ID: 35609192 [TBL] [Abstract][Full Text] [Related]
3. A High-Performance Computing Implementation of Iterative Random Forest for the Creation of Predictive Expression Networks. Cliff A; Romero J; Kainer D; Walker A; Furches A; Jacobson D Genes (Basel); 2019 Dec; 10(12):. PubMed ID: 31810264 [TBL] [Abstract][Full Text] [Related]
4. A Comparative Study of Supervised Machine Learning Algorithms for the Prediction of Long-Range Chromatin Interactions. Vanhaeren T; Divina F; García-Torres M; Gómez-Vela F; Vanhoof W; Martínez-García PM Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32847102 [TBL] [Abstract][Full Text] [Related]
5. Unsupervised Gene Network Inference with Decision Trees and Random Forests. Huynh-Thu VA; Geurts P Methods Mol Biol; 2019; 1883():195-215. PubMed ID: 30547401 [TBL] [Abstract][Full Text] [Related]
6. binomialRF: interpretable combinatoric efficiency of random forests to identify biomarker interactions. Rachid Zaim S; Kenost C; Berghout J; Chiu W; Wilson L; Zhang HH; Lussier YA BMC Bioinformatics; 2020 Aug; 21(1):374. PubMed ID: 32859146 [TBL] [Abstract][Full Text] [Related]
7. Toward a systems-level understanding of developmental regulatory networks. Busser BW; Bulyk ML; Michelson AM Curr Opin Genet Dev; 2008 Dec; 18(6):521-9. PubMed ID: 18848887 [TBL] [Abstract][Full Text] [Related]
8. Evaluating the performance of random forest and iterative random forest based methods when applied to gene expression data. Walker AM; Cliff A; Romero J; Shah MB; Jones P; Felipe Machado Gazolla JG; Jacobson DA; Kainer D Comput Struct Biotechnol J; 2022; 20():3372-3386. PubMed ID: 35832622 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional control in the segmentation gene network of Drosophila. Schroeder MD; Pearce M; Fak J; Fan H; Unnerstall U; Emberly E; Rajewsky N; Siggia ED; Gaul U PLoS Biol; 2004 Sep; 2(9):E271. PubMed ID: 15340490 [TBL] [Abstract][Full Text] [Related]
10. SNP selection and classification of genome-wide SNP data using stratified sampling random forests. Wu Q; Ye Y; Liu Y; Ng MK IEEE Trans Nanobioscience; 2012 Sep; 11(3):216-27. PubMed ID: 22987127 [TBL] [Abstract][Full Text] [Related]
11. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data. Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805 [TBL] [Abstract][Full Text] [Related]
12. Rotation of random forests for genomic and proteomic classification problems. Stiglic G; Rodriguez JJ; Kokol P Adv Exp Med Biol; 2011; 696():211-21. PubMed ID: 21431561 [TBL] [Abstract][Full Text] [Related]
16. Prediction of microRNA-regulated protein interaction pathways in Arabidopsis using machine learning algorithms. Kurubanjerdjit N; Huang CH; Lee YL; Tsai JJ; Ng KL Comput Biol Med; 2013 Nov; 43(11):1645-52. PubMed ID: 24209909 [TBL] [Abstract][Full Text] [Related]
17. Modeling transcriptional networks regulating secondary growth and wood formation in forest trees. Liu L; Filkov V; Groover A Physiol Plant; 2014 Jun; 151(2):156-63. PubMed ID: 24117954 [TBL] [Abstract][Full Text] [Related]
18. Introduction: Cancer Gene Networks. Clarke R Methods Mol Biol; 2017; 1513():1-9. PubMed ID: 27807826 [TBL] [Abstract][Full Text] [Related]
19. The parameter sensitivity of random forests. Huang BF; Boutros PC BMC Bioinformatics; 2016 Sep; 17(1):331. PubMed ID: 27586051 [TBL] [Abstract][Full Text] [Related]
20. Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure. Leem S; Jeong HH; Lee J; Wee K; Sohn KA Comput Biol Chem; 2014 Jun; 50():19-28. PubMed ID: 24581733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]