These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 29352088)

  • 1. An Archaeal Fluoride-Responsive Riboswitch Provides an Inducible Expression System for Hyperthermophiles.
    Speed MC; Burkhart BW; Picking JW; Santangelo TJ
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29352088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The TK0271 Protein Activates Transcription of Aromatic Amino Acid Biosynthesis Genes in the Hyperthermophilic Archaeon Thermococcus kodakarensis.
    Yamamoto Y; Kanai T; Kaneseki T; Atomi H
    mBio; 2019 Sep; 10(5):. PubMed ID: 31506306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermococcus kodakarensis provides a versatile hyperthermophilic archaeal platform for protein expression.
    Scott KA; Williams SA; Santangelo TJ
    Methods Enzymol; 2021; 659():243-273. PubMed ID: 34752288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genes regulated by branched-chain polyamine in the hyperthermophilic archaeon Thermococcus kodakarensis.
    Fukuda W; Yamori Y; Hamakawa M; Osaki M; Fukuda M; Hidese R; Kanesaki Y; Okamoto-Kainuma A; Kato S; Fujiwara S
    Amino Acids; 2020 Feb; 52(2):287-299. PubMed ID: 31621031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An overview of 25 years of research on Thermococcus kodakarensis, a genetically versatile model organism for archaeal research.
    Rashid N; Aslam M
    Folia Microbiol (Praha); 2020 Feb; 65(1):67-78. PubMed ID: 31286382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TK1211 Encodes an Amino Acid Racemase towards Leucine and Methionine in the Hyperthermophilic Archaeon Thermococcus kodakarensis.
    Zheng RC; Lu XF; Tomita H; Hachisuka SI; Zheng YG; Atomi H
    J Bacteriol; 2021 Mar; 203(7):. PubMed ID: 33468590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Mutant Chaperonin That Is Functional at Lower Temperatures Enables Hyperthermophilic Archaea To Grow under Cold-Stress Conditions.
    Gao L; Imanaka T; Fujiwara S
    J Bacteriol; 2015 Aug; 197(16):2642-52. PubMed ID: 26013483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of a Toxin-Antitoxin Gene Cassette under High Hydrostatic Pressure Enables Markerless Gene Disruption in the Hyperthermophilic Archaeon
    Song Q; Li Z; Chen R; Ma X; Xiao X; Xu J
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30504216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct Modified Nucleosides in tRNA
    Hirata A; Suzuki T; Nagano T; Fujii D; Okamoto M; Sora M; Lowe TM; Kanai T; Atomi H; Suzuki T; Hori H
    J Bacteriol; 2019 Nov; 201(21):. PubMed ID: 31405913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Structurally Novel Lipoyl Synthase in the Hyperthermophilic Archaeon Thermococcus kodakarensis.
    Jin JQ; Hachisuka SI; Sato T; Fujiwara T; Atomi H
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An archaeal histone is required for transformation of Thermococcus kodakarensis.
    Čuboňováa L; Katano M; Kanai T; Atomi H; Reeve JN; Santangelo TJ
    J Bacteriol; 2012 Dec; 194(24):6864-74. PubMed ID: 23065975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone and TK0471/TrmBL2 form a novel heterogeneous genome architecture in the hyperthermophilic archaeon Thermococcus kodakarensis.
    Maruyama H; Shin M; Oda T; Matsumi R; Ohniwa RL; Itoh T; Shirahige K; Imanaka T; Atomi H; Yoshimura SH; Takeyasu K
    Mol Biol Cell; 2011 Feb; 22(3):386-98. PubMed ID: 21148291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct Physiological Roles of the Three Ferredoxins Encoded in the Hyperthermophilic Archaeon
    Burkhart BW; Febvre HP; Santangelo TJ
    mBio; 2019 Mar; 10(2):. PubMed ID: 30837343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism Dealing with Thermal Degradation of NAD
    Hachisuka SI; Sato T; Atomi H
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28652302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Dephospho-Coenzyme A (Dephospho-CoA) Kinase in Thermococcus kodakarensis and Elucidation of the Entire CoA Biosynthesis Pathway in Archaea.
    Shimosaka T; Makarova KS; Koonin EV; Atomi H
    mBio; 2019 Jul; 10(4):. PubMed ID: 31337720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene regulation of two ferredoxin:NADP
    Hidese R; Yamashita K; Kawazuma K; Kanai T; Atomi H; Imanaka T; Fujiwara S
    Extremophiles; 2017 Sep; 21(5):903-917. PubMed ID: 28688056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperthermophilic Archaeon Thermococcus kodakarensis Utilizes a Four-Step Pathway for NAD
    Hachisuka SI; Sato T; Atomi H
    J Bacteriol; 2018 Jun; 200(11):. PubMed ID: 29555696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis.
    Jäger D; Förstner KU; Sharma CM; Santangelo TJ; Reeve JN
    BMC Genomics; 2014 Aug; 15(1):684. PubMed ID: 25127548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional redundancy of ubiquitin-like sulfur-carrier proteins facilitates flexible, efficient sulfur utilization in the primordial archaeon
    Hidese R; Ohira T; Sakakibara S; Suzuki T; Shigi N; Fujiwara S
    mBio; 2024 Aug; 15(8):e0053424. PubMed ID: 38975783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methionine sulfoxide reductase from the hyperthermophilic archaeon Thermococcus kodakaraensis, an enzyme designed to function at suboptimal growth temperatures.
    Fukushima E; Shinka Y; Fukui T; Atomi H; Imanaka T
    J Bacteriol; 2007 Oct; 189(19):7134-44. PubMed ID: 17660280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.