These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29352158)

  • 21. A novel dielectric breakdown apparatus for solid-state nanopore fabrication with transient high electric field.
    Fang S; Yin B; Xie W; Zhou D; Tang P; He S; Yuan J; Wang D
    Rev Sci Instrum; 2020 Sep; 91(9):093203. PubMed ID: 33003785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemically Functionalizing Controlled Dielectric Breakdown Silicon Nitride Nanopores by Direct Photohydrosilylation.
    Bandara YMNDY; Karawdeniya BI; Hagan JT; Chevalier RB; Dwyer JR
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30411-30420. PubMed ID: 31347369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown.
    Pud S; Verschueren D; Vukovic N; Plesa C; Jonsson MP; Dekker C
    Nano Lett; 2015 Oct; 15(10):7112-7. PubMed ID: 26333767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solid-state nanopores and nanopore arrays optimized for optical detection.
    Sawafta F; Clancy B; Carlsen AT; Huber M; Hall AR
    Nanoscale; 2014 Jun; 6(12):6991-6. PubMed ID: 24838772
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-step breakdown of a SiN membrane for nanopore fabrication: Formation of thin portion and penetration.
    Yanagi I; Hamamura H; Akahori R; Takeda KI
    Sci Rep; 2018 Jul; 8(1):10129. PubMed ID: 29973672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simple Fabrication of Solid-State Nanopores on a Carbon Film.
    Takai N; Shoji K; Maki T; Kawano R
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction.
    Goto Y; Yanagi I; Matsui K; Yokoi T; Takeda K
    Sci Rep; 2016 Aug; 6():31324. PubMed ID: 27499264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two color DNA barcode detection in photoluminescence suppressed silicon nitride nanopores.
    Assad ON; Di Fiori N; Squires AH; Meller A
    Nano Lett; 2015 Jan; 15(1):745-52. PubMed ID: 25522780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of nanopores for biomacromolecule detection.
    Yao ZN; Wang KG; Jin AZ; Li JJ; Yang HF; Zhang YG; Gu CZ
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7300-2. PubMed ID: 21137919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optically-Monitored Nanopore Fabrication Using a Focused Laser Beam.
    Gilboa T; Zrehen A; Girsault A; Meller A
    Sci Rep; 2018 Jun; 8(1):9765. PubMed ID: 29950607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanopore fabrication by controlled dielectric breakdown.
    Kwok H; Briggs K; Tabard-Cossa V
    PLoS One; 2014; 9(3):e92880. PubMed ID: 24658537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-time visualization and sub-diffraction limit localization of nanometer-scale pore formation by dielectric breakdown.
    Zrehen A; Gilboa T; Meller A
    Nanoscale; 2017 Nov; 9(42):16437-16445. PubMed ID: 29058736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast Fabrication of Solid-State Nanopores for DNA Molecule Analysis.
    Zhang Y; Ma D; Gu Z; Zhan L; Sha J
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes.
    Sischka A; Galla L; Meyer AJ; Spiering A; Knust S; Mayer M; Hall AR; Beyer A; Reimann P; Gölzhäuser A; Anselmetti D
    Analyst; 2015 Jul; 140(14):4843-7. PubMed ID: 25768647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of solid-state nanopore enlargement under electrical stress.
    Leung C; Briggs K; Laberge MP; Peng S; Waugh M; Tabard-Cossa V
    Nanotechnology; 2020 Oct; 31(44):44LT01. PubMed ID: 32698174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid manufacturing of low-noise membranes for nanopore sensors by trans-chip illumination lithography.
    Janssen XJ; Jonsson MP; Plesa C; Soni GV; Dekker C; Dekker NH
    Nanotechnology; 2012 Nov; 23(47):475302. PubMed ID: 23103750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-Time Profiling of Solid-State Nanopores During Solution-Phase Nanofabrication.
    Bandara YM; Karawdeniya BI; Dwyer JR
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30583-30589. PubMed ID: 27709879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An apparatus based on an atomic force microscope for implementing tip-controlled local breakdown.
    St-Denis T; Yazda K; Capaldi X; Bustamante J; Safari M; Miyahara Y; Zhang Y; Grutter P; Reisner W
    Rev Sci Instrum; 2019 Dec; 90(12):123703. PubMed ID: 31893796
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Fried JP; Swett JL; Nadappuram BP; Mol JA; Edel JB; Ivanov AP; Yates JR
    Chem Soc Rev; 2021 Apr; 50(8):4974-4992. PubMed ID: 33623941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controllable Shrinking of Glass Capillary Nanopores Down to sub-10 nm by Wet-Chemical Silanization for Signal-Enhanced DNA Translocation.
    Xu X; Li C; Zhou Y; Jin Y
    ACS Sens; 2017 Oct; 2(10):1452-1457. PubMed ID: 28971672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.