These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29352158)

  • 41. Hydrophilic and size-controlled graphene nanopores for protein detection.
    Goyal G; Lee YB; Darvish A; Ahn CW; Kim MJ
    Nanotechnology; 2016 Dec; 27(49):495301. PubMed ID: 27827346
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Scalable fabrication of nanopores in membranes via thermal annealing of Au nanoparticles.
    Park T; Lee SJ; Cha JH; Choi W
    Nanoscale; 2018 Dec; 10(47):22623-22634. PubMed ID: 30484792
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection.
    Deng Y; Huang Q; Zhao Y; Zhou D; Ying C; Wang D
    Nanotechnology; 2017 Jan; 28(4):045302. PubMed ID: 27981944
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photothermally Assisted Thinning of Silicon Nitride Membranes for Ultrathin Asymmetric Nanopores.
    Yamazaki H; Hu R; Zhao Q; Wanunu M
    ACS Nano; 2018 Dec; 12(12):12472-12481. PubMed ID: 30457833
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanopore Fabrication Made Easy: A Portable, Affordable Microcontroller-Assisted Approach for Tailored Pore Formation via Controlled Breakdown.
    Bandara YMNDY; Karawdeniya BI; Dutt S; Kluth P; Tricoli A
    Anal Chem; 2024 Feb; 96(5):2124-2134. PubMed ID: 38277343
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection.
    Yanagi I; Akahori R; Hatano T; Takeda K
    Sci Rep; 2014 May; 4():5000. PubMed ID: 24847795
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrathin, High-Lifetime Silicon Nitride Membranes for Nanopore Sensing.
    Dutt S; Karawdeniya BI; Bandara YMNDY; Afrin N; Kluth P
    Anal Chem; 2023 Apr; 95(13):5754-5763. PubMed ID: 36930050
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multichannel detection of ionic currents through two nanopores fabricated on integrated Si3N4 membranes.
    Yanagi I; Akahori R; Aoki M; Harada K; Takeda K
    Lab Chip; 2016 Aug; 16(17):3340-50. PubMed ID: 27440476
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The electric field strength in orifice-like nanopores of ultrathin membranes.
    Getpreecharsawas J; McGrath JL; Borkholder DA
    Nanotechnology; 2015 Jan; 26(4):045704. PubMed ID: 25557214
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process.
    Yanagi I; Ishida T; Fujisaki K; Takeda K
    Sci Rep; 2015 Oct; 5():14656. PubMed ID: 26424588
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of Adsorption on Proteins and Amyloid Detection by Silicon Nitride Nanopore.
    Balme S; Coulon PE; Lepoitevin M; Charlot B; Yandrapalli N; Favard C; Muriaux D; Bechelany M; Janot JM
    Langmuir; 2016 Sep; 32(35):8916-25. PubMed ID: 27506271
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microfluidic multiplexing of solid-state nanopores.
    Jain T; Rasera BC; Guerrero RJS; Lim JM; Karnik R
    J Phys Condens Matter; 2017 Dec; 29(48):484001. PubMed ID: 29116942
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Voltage Gating of a Biomimetic Nanopore: Electrowetting of a Hydrophobic Barrier.
    Trick JL; Song C; Wallace EJ; Sansom MS
    ACS Nano; 2017 Feb; 11(2):1840-1847. PubMed ID: 28141923
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrochemical impedance spectroscopy for black lipid membranes fused with channel protein supported on solid-state nanopore.
    Khan MS; Dosoky NS; Berdiev BK; Williams JD
    Eur Biophys J; 2016 Dec; 45(8):843-852. PubMed ID: 27480285
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.
    Schmidt T; Zhang M; Sychugov I; Roxhed N; Linnros J
    Nanotechnology; 2015 Aug; 26(31):314001. PubMed ID: 26180043
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DNA Translocation in Nanometer Thick Silicon Nanopores.
    Rodríguez-Manzo JA; Puster M; Nicolaï A; Meunier V; Drndić M
    ACS Nano; 2015 Jun; 9(6):6555-64. PubMed ID: 26035079
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Morphology around Nanopores Fabricated by Laser-Assisted Dielectric Breakdown and Its Impact on Ion and DNA Transport and Sensing.
    Dong M; Nouri R; Tang Z; Guan W
    ACS Appl Mater Interfaces; 2023 May; 15(20):24747-24755. PubMed ID: 37163692
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of electrons on the shape of nanopores prepared by focused electron beam induced etching.
    Liebes Y; Hadad B; Ashkenasy N
    Nanotechnology; 2011 Jul; 22(28):285303. PubMed ID: 21636881
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Use of solid-state nanopores for sensing co-translocational deformation of nano-liposomes.
    Goyal G; Darvish A; Kim MJ
    Analyst; 2015 Jul; 140(14):4865-73. PubMed ID: 25811537
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.