BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29352221)

  • 1. Role of METTL20 in regulating β-oxidation and heat production in mice under fasting or ketogenic conditions.
    Shimazu T; Furuse T; Balan S; Yamada I; Okuno S; Iwanari H; Suzuki T; Hamakubo T; Dohmae N; Yoshikawa T; Wakana S; Shinkai Y
    Sci Rep; 2018 Jan; 8(1):1179. PubMed ID: 29352221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human METTL20 is a mitochondrial lysine methyltransferase that targets the β subunit of electron transfer flavoprotein (ETFβ) and modulates its activity.
    Małecki J; Ho AY; Moen A; Dahl HA; Falnes PØ
    J Biol Chem; 2015 Jan; 290(1):423-34. PubMed ID: 25416781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human METTL20 methylates lysine residues adjacent to the recognition loop of the electron transfer flavoprotein in mitochondria.
    Rhein VF; Carroll J; He J; Ding S; Fearnley IM; Walker JE
    J Biol Chem; 2014 Aug; 289(35):24640-51. PubMed ID: 25023281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The METTL20 Homologue from Agrobacterium tumefaciens Is a Dual Specificity Protein-lysine Methyltransferase That Targets Ribosomal Protein L7/L12 and the β Subunit of Electron Transfer Flavoprotein (ETFβ).
    Małecki J; Dahl HA; Moen A; Davydova E; Falnes PØ
    J Biol Chem; 2016 Apr; 291(18):9581-95. PubMed ID: 26929405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatic neddylation targets and stabilizes electron transfer flavoproteins to facilitate fatty acid β-oxidation.
    Zhang X; Zhang YL; Qiu G; Pian L; Guo L; Cao H; Liu J; Zhao Y; Li X; Xu Z; Huang X; Huang J; Dong J; Shen B; Wang HX; Ying X; Zhang WJ; Cao X; Zhang J
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2473-2483. PubMed ID: 31941714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative imaging of electron transfer flavoprotein autofluorescence reveals the dynamics of lipid partitioning in living pancreatic islets.
    Lam AK; Silva PN; Altamentova SM; Rocheleau JV
    Integr Biol (Camb); 2012 Aug; 4(8):838-46. PubMed ID: 22733276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of electron-transferring flavoprotein and its dehydrogenase required for fungal development and plant infection by the rice blast fungus.
    Li Y; Zhu J; Hu J; Meng X; Zhang Q; Zhu K; Chen X; Chen X; Li G; Wang Z; Lu G
    Sci Rep; 2016 Apr; 6():24911. PubMed ID: 27113712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of superoxide and hydrogen peroxide generation by human electron-transfer flavoprotein and pathological variants.
    Rodrigues JV; Gomes CM
    Free Radic Biol Med; 2012 Jul; 53(1):12-9. PubMed ID: 22588007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary coenzyme Q10 deficiency and oxidative stress in cultured fibroblasts from patients with riboflavin responsive multiple Acyl-CoA dehydrogenation deficiency.
    Cornelius N; Byron C; Hargreaves I; Guerra PF; Furdek AK; Land J; Radford WW; Frerman F; Corydon TJ; Gregersen N; Olsen RK
    Hum Mol Genet; 2013 Oct; 22(19):3819-27. PubMed ID: 23727839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic Hypoxia Enhances β-Oxidation-Dependent Electron Transport via Electron Transferring Flavoproteins.
    Fuhrmann DC; Olesch C; Kurrle N; Schnütgen F; Zukunft S; Fleming I; Brüne B
    Cells; 2019 Feb; 8(2):. PubMed ID: 30781698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness.
    Ishizaki K; Schauer N; Larson TR; Graham IA; Fernie AR; Leaver CJ
    Plant J; 2006 Sep; 47(5):751-60. PubMed ID: 16923016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new form of mammalian electron-transferring flavoprotein.
    Lehman TC; Thorpe C
    Arch Biochem Biophys; 1992 Feb; 292(2):594-9. PubMed ID: 1731621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The multiple acyl-coenzyme A dehydrogenation disorders, glutaric aciduria type II and ethylmalonic-adipic aciduria. Mitochondrial fatty acid oxidation, acyl-coenzyme A dehydrogenase, and electron transfer flavoprotein activities in fibroblasts.
    Amendt BA; Rhead WJ
    J Clin Invest; 1986 Jul; 78(1):205-13. PubMed ID: 3722376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of mitochondrial proteome in a severe case of ETF-QO deficiency.
    Rocha H; Ferreira R; Carvalho J; Vitorino R; Santa C; Lopes L; Gregersen N; Vilarinho L; Amado F
    J Proteomics; 2011 Dec; 75(1):221-8. PubMed ID: 21596162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutaryl-coenzyme A dehydrogenase from Geobacter metallireducens - interaction with electron transferring flavoprotein and kinetic basis of unidirectional catalysis.
    Estelmann S; Boll M
    FEBS J; 2014 Nov; 281(22):5120-31. PubMed ID: 25223645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liver fatty acid binding protein is required for high rates of hepatic fatty acid oxidation but not for the action of PPARalpha in fasting mice.
    Erol E; Kumar LS; Cline GW; Shulman GI; Kelly DP; Binas B
    FASEB J; 2004 Feb; 18(2):347-9. PubMed ID: 14656998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool.
    Zhang J; Frerman FE; Kim JJ
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16212-7. PubMed ID: 17050691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Participation of peroxisomes in the metabolism of xenobiotic acyl compounds: comparison between peroxisomal and mitochondrial beta-oxidation of omega-phenyl fatty acids in rat liver.
    Yamada J; Ogawa S; Horie S; Watanabe T; Suga T
    Biochim Biophys Acta; 1987 Sep; 921(2):292-301. PubMed ID: 3651489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency.
    Olsen RK; Olpin SE; Andresen BS; Miedzybrodzka ZH; Pourfarzam M; Merinero B; Frerman FE; Beresford MW; Dean JC; Cornelius N; Andersen O; Oldfors A; Holme E; Gregersen N; Turnbull DM; Morris AA
    Brain; 2007 Aug; 130(Pt 8):2045-54. PubMed ID: 17584774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutaric aciduria type II: in vitro studies on substrate oxidation, acyl-CoA dehydrogenases, and electron-transferring flavoprotein in cultured skin fibroblasts.
    Rhead W; Mantagos S; Tanaka K
    Pediatr Res; 1980 Dec; 14(12):1339-42. PubMed ID: 7208150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.