These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29352233)

  • 21. Building an evolutionary innovation: differential growth in the modified vertebral elements of the zebrafish Weberian apparatus.
    Bird NC; Hernandez LP
    Zoology (Jena); 2009; 112(2):97-112. PubMed ID: 19027276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pressure and particle motion detection thresholds in fish: a re-examination of salient auditory cues in teleosts.
    Radford CA; Montgomery JC; Caiger P; Higgs DM
    J Exp Biol; 2012 Oct; 215(Pt 19):3429-35. PubMed ID: 22693030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size matters: diversity in swimbladders and Weberian ossicles affects hearing in catfishes.
    Lechner W; Ladich F
    J Exp Biol; 2008 May; 211(Pt 10):1681-9. PubMed ID: 18456895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microstructural and compositional variation in pacu and piranha teeth related to diet specialization (Teleostei: Serrasalmidae).
    Delaunois Y; Huby A; Malherbe C; Eppe G; Parmentier É; Compère P
    J Struct Biol; 2020 Jun; 210(3):107509. PubMed ID: 32298814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of Structure and Sensitivity of the Fish Inner Ear.
    Vasconcelos RO; Alderks PW; Sisneros JA
    Adv Exp Med Biol; 2016; 877():291-318. PubMed ID: 26515320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphological variation in the Weberian apparatus of Cypriniformes.
    Bird NC; Hernandez LP
    J Morphol; 2007 Sep; 268(9):739-57. PubMed ID: 17591731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diversity of Inner Ears in Fishes: Possible Contribution Towards Hearing Improvements and Evolutionary Considerations.
    Schulz-Mirbach T; Ladich F
    Adv Exp Med Biol; 2016; 877():341-91. PubMed ID: 26515322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Histology and structural integration of the major morphologies of the Cypriniform Weberian apparatus.
    Bird NC; Abels JR; Richardson SS
    J Morphol; 2020 Feb; 281(2):273-293. PubMed ID: 31886901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A quantitative morphological analysis of the inner ear of galliform birds.
    Corfield JR; Krilow JM; Vande Ligt MN; Iwaniuk AN
    Hear Res; 2013 Oct; 304():111-27. PubMed ID: 23871766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Underwater Hearing in Turtles.
    Willis KL
    Adv Exp Med Biol; 2016; 875():1229-35. PubMed ID: 26611091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inner ear anatomy is a proxy for deducing auditory capability and behaviour in reptiles and birds.
    Walsh SA; Barrett PM; Milner AC; Manley G; Witmer LM
    Proc Biol Sci; 2009 Apr; 276(1660):1355-60. PubMed ID: 19141427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Histological development and integration of the Zebrafish Weberian apparatus.
    Bird NC; Richardson SS; Abels JR
    Dev Dyn; 2020 Aug; 249(8):998-1017. PubMed ID: 32243643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptive hearing in the vocal plainfin midshipman fish: getting in tune for the breeding season and implications for acoustic communication.
    Sisneros JA
    Integr Zool; 2009 Mar; 4(1):33-42. PubMed ID: 21392275
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pacific herring hearing does not include ultrasound.
    Mann DA; Popper AN; Wilson B
    Biol Lett; 2005 Jun; 1(2):158-61. PubMed ID: 17148154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptation to herbivory and detritivory drives the convergent evolution of large abdominal cavities in a diverse freshwater fish radiation (Otophysi: Characiformes).
    Burns MD
    Evolution; 2021 Mar; 75(3):688-705. PubMed ID: 33491179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Yellow-eyed piranhas produce louder sounds than red-eyed piranhas in an invasive population of Serrasalmus marginatus.
    Raick X; Huby A; Kurchevski G; Godinho AL; Parmentier É
    J Fish Biol; 2020 Dec; 97(6):1676-1680. PubMed ID: 32901922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlations between auditory structures and hearing sensitivity in non-human primates.
    Coleman MN; Colbert MW
    J Morphol; 2010 May; 271(5):511-32. PubMed ID: 20025067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The tradeoff between signal detection and recognition rules auditory sensitivity under variable background noise conditions.
    Lugli M
    J Theor Biol; 2015 Dec; 386():1-6. PubMed ID: 26375371
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ontogenetic development of the inner ear saccule and utricle in the Lusitanian toadfish: Potential implications for auditory sensitivity.
    Chaves PP; Valdoria CMC; Amorim MCP; Vasconcelos RO
    Hear Res; 2017 Sep; 353():112-121. PubMed ID: 28668316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of bioacoustics in species identification: Piranhas from genus Pygocentrus (Teleostei: Serrasalmidae) as a case study.
    Raick X; Huby A; Kurchevski G; Godinho AL; Parmentier É
    PLoS One; 2020; 15(10):e0241316. PubMed ID: 33119694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.