These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 29352294)

  • 1. Seasonal variation in environmental DNA detection in sediment and water samples.
    Buxton AS; Groombridge JJ; Griffiths RA
    PLoS One; 2018; 13(1):e0191737. PubMed ID: 29352294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The detection of great crested newts year round via environmental DNA analysis.
    Rees HC; Baker CA; Gardner DS; Maddison BC; Gough KC
    BMC Res Notes; 2017 Jul; 10(1):327. PubMed ID: 28747216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is the detection of aquatic environmental DNA influenced by substrate type?
    Buxton AS; Groombridge JJ; Griffiths RA
    PLoS One; 2017; 12(8):e0183371. PubMed ID: 28813525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal variation in environmental DNA in relation to population size and environmental factors.
    Buxton AS; Groombridge JJ; Zakaria NB; Griffiths RA
    Sci Rep; 2017 Apr; 7():46294. PubMed ID: 28393885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of eDNA for monitoring of the Great Crested Newt in the UK.
    Rees HC; Bishop K; Middleditch DJ; Patmore JR; Maddison BC; Gough KC
    Ecol Evol; 2014 Nov; 4(21):4023-32. PubMed ID: 25505530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental DNA (eDNA) Detection Probability Is Influenced by Seasonal Activity of Organisms.
    de Souza LS; Godwin JC; Renshaw MA; Larson E
    PLoS One; 2016; 11(10):e0165273. PubMed ID: 27776150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliability of environmental DNA surveys to detect pond occupancy by newts at a national scale.
    Buxton A; Diana A; Matechou E; Griffin J; Griffiths RA
    Sci Rep; 2022 Jan; 12(1):1295. PubMed ID: 35079132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water.
    Holman LE; de Bruyn M; Creer S; Carvalho G; Robidart J; Rius M
    Sci Rep; 2019 Aug; 9(1):11559. PubMed ID: 31399606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. I Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader.
    Smart AS; Tingley R; Weeks AR; van Rooyen AR; McCarthy MA
    Ecol Appl; 2015 Oct; 25(7):1944-52. PubMed ID: 26591459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of an invasive aquatic plant in natural water bodies using environmental DNA.
    Anglès d'Auriac MB; Strand DA; Mjelde M; Demars BOL; Thaulow J
    PLoS One; 2019; 14(7):e0219700. PubMed ID: 31299064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (
    Harper LR; Lawson Handley L; Hahn C; Boonham N; Rees HC; Gough KC; Lewis E; Adams IP; Brotherton P; Phillips S; Hänfling B
    Ecol Evol; 2018 Jun; 8(12):6330-6341. PubMed ID: 29988445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic approach to evaluate the influence of environmental conditions on eDNA detection success in aquatic ecosystems.
    Stoeckle BC; Beggel S; Cerwenka AF; Motivans E; Kuehn R; Geist J
    PLoS One; 2017; 12(12):e0189119. PubMed ID: 29220394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating observer bias and seasonal detection rates in amphibian pathogen eDNA collections by citizen scientists.
    Julian JT; Glenney GW; Rees C
    Dis Aquat Organ; 2019 Apr; 134(1):15-24. PubMed ID: 32132269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between the distribution of common carp and their environmental DNA in a small lake.
    Eichmiller JJ; Bajer PG; Sorensen PW
    PLoS One; 2014; 9(11):e112611. PubMed ID: 25383965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing environmental DNA detection in controlled lentic systems.
    Moyer GR; Díaz-Ferguson E; Hill JE; Shea C
    PLoS One; 2014; 9(7):e103767. PubMed ID: 25079969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using occupancy modelling to compare environmental DNA to traditional field methods for regional-scale monitoring of an endangered aquatic species.
    Schmelzle MC; Kinziger AP
    Mol Ecol Resour; 2016 Jul; 16(4):895-908. PubMed ID: 26677162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental DNA analysis of river herring in Chesapeake Bay: A powerful tool for monitoring threatened keystone species.
    Plough LV; Ogburn MB; Fitzgerald CL; Geranio R; Marafino GA; Richie KD
    PLoS One; 2018; 13(11):e0205578. PubMed ID: 30383750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental DNA enables detection of terrestrial mammals from forest pond water.
    Ushio M; Fukuda H; Inoue T; Makoto K; Kishida O; Sato K; Murata K; Nikaido M; Sado T; Sato Y; Takeshita M; Iwasaki W; Yamanaka H; Kondoh M; Miya M
    Mol Ecol Resour; 2017 Nov; 17(6):e63-e75. PubMed ID: 28603873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation.
    Alsos IG; Lammers Y; Yoccoz NG; Jørgensen T; Sjögren P; Gielly L; Edwards ME
    PLoS One; 2018; 13(4):e0195403. PubMed ID: 29664954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Validation of Environmental DNA (eDNA) Markers for Detection of Freshwater Turtles.
    Davy CM; Kidd AG; Wilson CC
    PLoS One; 2015; 10(7):e0130965. PubMed ID: 26200348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.