These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 29352347)

  • 21. Healing of an ulnar defect using a proprietary TCP bone graft substitute, JAX, in association with autologous osteogenic cells and growth factors.
    Clarke SA; Hoskins NL; Jordan GR; Marsh DR
    Bone; 2007 Apr; 40(4):939-47. PubMed ID: 17175212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autologous bone marrow grafting combined with demineralized bone matrix improves consolidation of docking site after distraction osteogenesis.
    Hatzokos I; Stavridis SI; Iosifidou E; Karataglis D; Christodoulou A
    J Bone Joint Surg Am; 2011 Apr; 93(7):671-8. PubMed ID: 21471421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell-based therapy by implanted human bone marrow-derived mononuclear cells improved bone healing of large bone defects in rats.
    Seebach C; Henrich D; Schaible A; Relja B; Jugold M; Bönig H; Marzi I
    Tissue Eng Part A; 2015 May; 21(9-10):1565-78. PubMed ID: 25693739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficacy and Safety of Autologous Cell-based Therapy in Patients with No-option Critical Limb Ischaemia: A Meta-Analysis.
    Wahid FSA; Ismail NA; Wan Jamaludin WF; Muhamad NA; Mohamad Idris MA; Lai NM
    Curr Stem Cell Res Ther; 2018; 13(4):265-283. PubMed ID: 29532760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-bone critical-size defects treated with tissue-engineered grafts: a study on sheep.
    Viateau V; Guillemin G; Bousson V; Oudina K; Hannouche D; Sedel L; Logeart-Avramoglou D; Petite H
    J Orthop Res; 2007 Jun; 25(6):741-9. PubMed ID: 17318898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scaffold-based delivery of autologous mesenchymal stem cells for mandibular distraction osteogenesis: preliminary studies in a porcine model.
    Sun Z; Tee BC; Kennedy KS; Kennedy PM; Kim DG; Mallery SR; Fields HW
    PLoS One; 2013; 8(9):e74672. PubMed ID: 24040314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adipose-derived stem cells combined with inorganic bovine bone in calvarial bone healing in rats with type 2 diabetes.
    Liang L; Song Y; Li L; Li D; Qin M; Zhao J; Xie C; Sun D; Liu Y; Jiao T; Liu N; Zou G
    J Periodontol; 2014 Apr; 85(4):601-9. PubMed ID: 23805817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone reconstruction of large defects using bone marrow derived autologous stem cells.
    Lucarelli E; Donati D; Cenacchi A; Fornasari PM
    Transfus Apher Sci; 2004 Apr; 30(2):169-74. PubMed ID: 15062758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Bone tissue engineering. Reconstruction of critical sized segmental bone defects in the ovine tibia].
    Reichert JC; Epari DR; Wullschleger ME; Berner A; Saifzadeh S; Nöth U; Dickinson IC; Schuetz MA; Hutmacher DW
    Orthopade; 2012 Apr; 41(4):280-7. PubMed ID: 22476418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Reconstruction of segmental bone defect by gene modified tissue engineering bone combined with vascularized periosteum].
    Li JJ; Zhao Q; Wang H; Yang J; Yuan Q; Cui SQ; Li L
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2007 Nov; 23(6):502-6. PubMed ID: 18269027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Histologic evaluation of the osteoinductive property of autogenous demineralized dentin matrix on surgical bone defects in rabbit skulls using human amniotic membrane for guided bone regeneration.
    Gomes MF; dos Anjos MJ; Nogueira TO; Guimarães SA
    Int J Oral Maxillofac Implants; 2001; 16(4):563-71. PubMed ID: 11516004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Primary study on tissue engineered periosteum osteogenesis to repair scapula defect in vivo in allogenic rabbit].
    Zhang C; Wang S; Ren G; Tuo Z; Yu J; Wang J; An L; Ma J; Zhao L
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):384-8. PubMed ID: 24844025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficacy of autologous stem cell-based therapy for osteonecrosis of the femoral head in sickle cell disease: a five-year follow-up study.
    Daltro GC; Fortuna V; de Souza ES; Salles MM; Carreira AC; Meyer R; Freire SM; Borojevic R
    Stem Cell Res Ther; 2015 May; 6(1):110. PubMed ID: 26021713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats.
    Silva RV; Camilli JA; Bertran CA; Moreira NH
    Int J Oral Maxillofac Surg; 2005 Mar; 34(2):178-84. PubMed ID: 15695048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect.
    Arinzeh TL; Peter SJ; Archambault MP; van den Bos C; Gordon S; Kraus K; Smith A; Kadiyala S
    J Bone Joint Surg Am; 2003 Oct; 85(10):1927-35. PubMed ID: 14563800
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bone allografts combined with adipose-derived stem cells in an optimized cell/volume ratio showed enhanced osteogenesis and angiogenesis in a murine femur defect model.
    Wagner JM; Conze N; Lewik G; Wallner C; Brune JC; Dittfeld S; Jaurich H; Becerikli M; Dadras M; Harati K; Fischer S; Lehnhardt M; Behr B
    J Mol Med (Berl); 2019 Oct; 97(10):1439-1450. PubMed ID: 31367858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone marrow stromal cells and their use in regenerating bone.
    Cancedda R; Mastrogiacomo M; Bianchi G; Derubeis A; Muraglia A; Quarto R
    Novartis Found Symp; 2003; 249():133-43; discussion 143-7, 170-4, 239-41. PubMed ID: 12708654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repair of segmental long-bone defects by stem cell concentrate augmented scaffolds: a clinical and positron emission tomography--computed tomography analysis.
    Petri M; Namazian A; Wilke F; Ettinger M; Stübig T; Brand S; Bengel F; Krettek C; Berding G; Jagodzinski M
    Int Orthop; 2013 Nov; 37(11):2231-7. PubMed ID: 24013459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone healing in rabbit calvarial critical-sized defects filled with stem cells and growth factors combined with granular or solid scaffolds.
    Lappalainen OP; Karhula S; Haapea M; Kyllönen L; Haimi S; Miettinen S; Saarakkala S; Korpi J; Ylikontiola LP; Serlo WS; Sándor GK
    Childs Nerv Syst; 2016 Apr; 32(4):681-8. PubMed ID: 26782995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.