These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 29352756)

  • 1. Influence of defect locations and nitrogen doping configurations on the mechanical properties of armchair graphene nanoribbons.
    Senturk AE; Oktem AS; Konukman AES
    J Mol Model; 2018 Jan; 24(2):43. PubMed ID: 29352756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the nitrogen doping configuration and site on the thermal conductivity of defective armchair graphene nanoribbons.
    Senturk AE; Oktem AS; Konukman AES
    J Mol Model; 2017 Aug; 23(8):247. PubMed ID: 28766111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.
    Ryou J; Park J; Kim G; Hong S
    J Phys Condens Matter; 2017 Jun; 29(24):245301. PubMed ID: 28443604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structure and transport properties of N2(AA)-doped armchair and zigzag graphene nanoribbons.
    Owens JR; Cruz-Silva E; Meunier V
    Nanotechnology; 2013 Jun; 24(23):235701. PubMed ID: 23669134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving gas sensing properties of armchair graphene nanoribbons by oxygen-hydrogen terminated edges.
    Jamalzadeh Kheirabadi S; Ghayour R; Sanaee M
    Nanotechnology; 2019 Oct; 30(43):435501. PubMed ID: 31300615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational study of precision nitrogen doping on graphene nanoribbon edges.
    Dong Y; Gahl MT; Zhang C; Lin J
    Nanotechnology; 2017 Dec; 28(50):505602. PubMed ID: 29087366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uniform and perfectly linear current-voltage characteristics of nitrogen-doped armchair graphene nanoribbons for nanowires.
    Liu L; Li XF; Yan Q; Li QK; Zhang XH; Deng M; Qiu Q; Luo Y
    Phys Chem Chem Phys; 2016 Dec; 19(1):44-48. PubMed ID: 27918024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ZnO dimers on the thermoelectric performance of armchair graphene nanoribbons.
    Ajeel FN; Ahmed AB
    J Mol Model; 2023 Apr; 29(5):145. PubMed ID: 37067639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural transformations of graphene exposed to nitrogen plasma: quantum chemical molecular dynamics simulations.
    Moon S; Hijikata Y; Irle S
    Phys Chem Chem Phys; 2019 Jun; 21(23):12112-12120. PubMed ID: 30888388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous strength characteristics of Stone-Thrower-Wales defects in graphene sheets - a molecular dynamics study.
    Juneja A; Rajasekaran G
    Phys Chem Chem Phys; 2018 Jun; 20(22):15203-15215. PubMed ID: 29789830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing graphene capacitance by nitrogen: effects of doping configuration and concentration.
    Zhan C; Zhang Y; Cummings PT; Jiang DE
    Phys Chem Chem Phys; 2016 Feb; 18(6):4668-74. PubMed ID: 26794824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-Surface Synthesis of 8- and 10-Armchair Graphene Nanoribbons.
    Sun K; Ji P; Zhang J; Wang J; Li X; Xu X; Zhang H; Chi L
    Small; 2019 Apr; 15(15):e1804526. PubMed ID: 30891917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous transport properties in boron and phosphorus co-doped armchair graphene nanoribbons.
    Kim HS; Kim SS; Kim HS; Kim YH
    Nanotechnology; 2016 Nov; 27(47):47LT01. PubMed ID: 27782001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the Optical Properties of Doped and Undoped 9-Armchair Graphene Nanoribbons in Dispersion.
    Lindenthal S; Fazzi D; Zorn NF; El Yumin AA; Settele S; Weidinger B; Blasco E; Zaumseil J
    ACS Nano; 2023 Sep; 17(18):18240-18252. PubMed ID: 37695780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knitted graphene-nanoribbon sheet: a mechanically robust structure.
    Wei N; Fan Z; Xu LQ; Zheng YP; Wang HQ; Zheng JC
    Nanoscale; 2012 Feb; 4(3):785-91. PubMed ID: 22170502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain dependence of the heat transport properties of graphene nanoribbons.
    Yeo PS; Loh KP; Gan CK
    Nanotechnology; 2012 Dec; 23(49):495702. PubMed ID: 23149343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoelectric properties of armchair graphene nanoribbons with array characteristics.
    Kuo DMT
    RSC Adv; 2024 Jan; 14(5):3513-3518. PubMed ID: 38259995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Confinement in Epitaxial Armchair Graphene Nanoribbons on SiC Sidewalls.
    Nhung Nguyen TT; Power SR; Karakachian H; Starke U; Tegenkamp C
    ACS Nano; 2023 Oct; 17(20):20345-20352. PubMed ID: 37788294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periodically Modulated Size-Dependent Elastic Properties of Armchair Graphene Nanoribbons.
    Li X; Zhang TY; Su YJ
    Nano Lett; 2015 Aug; 15(8):4883-8. PubMed ID: 26134244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Half-filled energy bands induced negative differential resistance in nitrogen-doped graphene.
    Li XF; Lian KY; Qiu Q; Luo Y
    Nanoscale; 2015 Mar; 7(9):4156-62. PubMed ID: 25665635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.