These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 29352779)

  • 1. Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions.
    Ahuja VR; van der Gucht J; Briels WJ
    J Chem Phys; 2018 Jan; 148(3):034902. PubMed ID: 29352779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large Scale Hydrodynamically Coupled Brownian Dynamics Simulations of Polymer Solutions Flowing through Porous Media.
    Ahuja VR; van der Gucht J; Briels W
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarse-grained simulations for flow of complex soft matter fluids in the bulk and in the presence of solid interfaces.
    Ahuja VR; van der Gucht J; Briels WJ
    J Chem Phys; 2016 Nov; 145(19):194903. PubMed ID: 27875869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Momentum conserving Brownian dynamics propagator for complex soft matter fluids.
    Padding JT; Briels WJ
    J Chem Phys; 2014 Dec; 141(24):244108. PubMed ID: 25554134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smoothed dissipative particle dynamics model for polymer molecules in suspension.
    Litvinov S; Ellero M; Hu X; Adams NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066703. PubMed ID: 18643393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuating hydrodynamics in periodic domains and heterogeneous adjacent multidomains: Thermal equilibrium.
    Bian X; Li Z; Deng M; Karniadakis GE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053302. PubMed ID: 26651811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics.
    Petsev ND; Leal LG; Shell MS
    J Chem Phys; 2015 Jan; 142(4):044101. PubMed ID: 25637963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse Poiseuille flow.
    Fedosov DA; Karniadakis GE; Caswell B
    J Chem Phys; 2010 Apr; 132(14):144103. PubMed ID: 20405981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implicit atomistic viscosities in smoothed dissipative particle dynamics.
    Borreguero M; Bezgin D; Adami S; Adams NA
    Phys Rev E; 2019 Sep; 100(3-1):033318. PubMed ID: 31640035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics.
    Vázquez-Quesada A; Ellero M; Español P
    J Chem Phys; 2009 Jan; 130(3):034901. PubMed ID: 19173537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows.
    Ye T; Phan-Thien N; Lim CT; Peng L; Shi H
    Phys Rev E; 2017 Jun; 95(6-1):063314. PubMed ID: 28709282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between theoretical values and simulation results of viscosity for the dissipative particle dynamics method.
    Satoh A; Majima T
    J Colloid Interface Sci; 2005 Mar; 283(1):251-66. PubMed ID: 15694446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries.
    Berk Usta O; Ladd AJ; Butler JE
    J Chem Phys; 2005 Mar; 122(9):094902. PubMed ID: 15836176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic interactions for single dissipative-particle-dynamics particles and their clusters and filaments.
    Pan W; Fedosov DA; Karniadakis GE; Caswell B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046706. PubMed ID: 18999560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations.
    Kordilla J; Pan W; Tartakovsky A
    J Chem Phys; 2014 Dec; 141(22):224112. PubMed ID: 25494737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computationally efficient algorithms for incorporation of hydrodynamic and excluded volume interactions in Brownian dynamics simulations: a comparative study of the Krylov subspace and Chebyshev based techniques.
    Saadat A; Khomami B
    J Chem Phys; 2014 May; 140(18):184903. PubMed ID: 24832302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N log N method for hydrodynamic interactions of confined polymer systems: Brownian dynamics.
    Hernández-Ortiz JP; de Pablo JJ; Graham MD
    J Chem Phys; 2006 Oct; 125(16):164906. PubMed ID: 17092138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling a nano-particle with isothermal fluctuating hydrodynamics: Coarse-graining from microscopic to mesoscopic dynamics.
    Español P; Donev A
    J Chem Phys; 2015 Dec; 143(23):234104. PubMed ID: 26696043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel O(N) Stokes' solver towards scalable Brownian dynamics of hydrodynamically interacting objects in general geometries.
    Zhao X; Li J; Jiang X; Karpeev D; Heinonen O; Smith B; Hernandez-Ortiz JP; de Pablo JJ
    J Chem Phys; 2017 Jun; 146(24):244114. PubMed ID: 28668032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations.
    Lei H; Baker NA; Wu L; Schenter GK; Mundy CJ; Tartakovsky AM
    Phys Rev E; 2016 Aug; 94(2-1):023304. PubMed ID: 27627409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.