These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 29352783)
1. Addressing global uncertainty and sensitivity in first-principles based microkinetic models by an adaptive sparse grid approach. Döpking S; Plaisance CP; Strobusch D; Reuter K; Scheurer C; Matera S J Chem Phys; 2018 Jan; 148(3):034102. PubMed ID: 29352783 [TBL] [Abstract][Full Text] [Related]
2. A practical approach to the sensitivity analysis for kinetic Monte Carlo simulation of heterogeneous catalysis. Hoffmann MJ; Engelmann F; Matera S J Chem Phys; 2017 Jan; 146(4):044118. PubMed ID: 28147552 [TBL] [Abstract][Full Text] [Related]
3. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
4. Achieving Theory-Experiment Parity for Activity and Selectivity in Heterogeneous Catalysis Using Microkinetic Modeling. Xie W; Xu J; Chen J; Wang H; Hu P Acc Chem Res; 2022 May; 55(9):1237-1248. PubMed ID: 35442027 [TBL] [Abstract][Full Text] [Related]
5. Efficient global sensitivity analysis of kinetic Monte Carlo simulations using Cramérs-von Mises distance. Dortaj S; Matera S J Chem Phys; 2023 Sep; 159(9):. PubMed ID: 37671958 [TBL] [Abstract][Full Text] [Related]
6. Experiment design through dynamical characterisation of non-linear systems biology models utilising sparse grids. Donahue MM; Buzzard GT; Rundell AE IET Syst Biol; 2010 Jul; 4(4):249-62. PubMed ID: 20632775 [TBL] [Abstract][Full Text] [Related]
7. OpenMKM: An Open-Source C++ Multiscale Modeling Simulator for Homogeneous and Heterogeneous Catalytic Reactions. Medasani B; Kasiraju S; Vlachos DG J Chem Inf Model; 2023 Jun; 63(11):3377-3391. PubMed ID: 37195251 [TBL] [Abstract][Full Text] [Related]
8. A Lattice Kinetic Monte Carlo Solver for First-Principles Microkinetic Trend Studies. Hoffmann MJ; Bligaard T J Chem Theory Comput; 2018 Mar; 14(3):1583-1593. PubMed ID: 29357239 [TBL] [Abstract][Full Text] [Related]
9. Thermochemical evaluation of adaptive and fixed density functional theory quadrature schemes. Hesselmann A; Werner HJ; Knowles PJ J Chem Phys; 2022 Dec; 157(23):234106. PubMed ID: 36550055 [TBL] [Abstract][Full Text] [Related]
10. A fast species redistribution approach to accelerate the kinetic Monte Carlo simulation for heterogeneous catalysis. Cao XM; Shao ZJ; Hu P Phys Chem Chem Phys; 2020 Apr; 22(14):7348-7364. PubMed ID: 32211648 [TBL] [Abstract][Full Text] [Related]
11. A More Accurate Kinetic Monte Carlo Approach to a Monodimensional Surface Reaction: The Interaction of Oxygen with the RuO Pogodin S; López N ACS Catal; 2014 Jul; 4(7):2328-2332. PubMed ID: 25061545 [TBL] [Abstract][Full Text] [Related]
12. Adlayer inhomogeneity without lateral interactions: rationalizing correlation effects in CO oxidation at RuO2(110) with first-principles kinetic Monte Carlo. Matera S; Meskine H; Reuter K J Chem Phys; 2011 Feb; 134(6):064713. PubMed ID: 21322727 [TBL] [Abstract][Full Text] [Related]
13. Beyond mean-field approximations for accurate and computationally efficient models of on-lattice chemical kinetics. Pineda M; Stamatakis M J Chem Phys; 2017 Jul; 147(2):024105. PubMed ID: 28711048 [TBL] [Abstract][Full Text] [Related]
14. Experimental microkinetic approach of the photocatalytic oxidation of isopropyl alcohol on TiO2. Part 2. from the surface elementary steps to the rates of oxidation of the C3H(x)O species. Arsac F; Bianchi D; Chovelon JM; Ferronato C; Herrmann JM J Phys Chem A; 2006 Mar; 110(12):4213-22. PubMed ID: 16553372 [TBL] [Abstract][Full Text] [Related]
15. Assessment of mean-field microkinetic models for CO methanation on stepped metal surfaces using accelerated kinetic Monte Carlo. Andersen M; Plaisance CP; Reuter K J Chem Phys; 2017 Oct; 147(15):152705. PubMed ID: 29055323 [TBL] [Abstract][Full Text] [Related]
16. Microkinetic Modeling: A Tool for Rational Catalyst Design. Motagamwala AH; Dumesic JA Chem Rev; 2021 Jan; 121(2):1049-1076. PubMed ID: 33205961 [TBL] [Abstract][Full Text] [Related]
17. Iterative multiscale and multi-physics computations for operando catalyst nanostructure elucidation and kinetic modeling. Rajan A; Pushkar AP; Dharmalingam BC; Varghese JJ iScience; 2023 Jul; 26(7):107029. PubMed ID: 37360694 [TBL] [Abstract][Full Text] [Related]
18. Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling. Dotto CB; Mannina G; Kleidorfer M; Vezzaro L; Henrichs M; McCarthy DT; Freni G; Rauch W; Deletic A Water Res; 2012 May; 46(8):2545-58. PubMed ID: 22402270 [TBL] [Abstract][Full Text] [Related]
19. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling. Schaefer C; Jansen AP J Chem Phys; 2013 Feb; 138(5):054102. PubMed ID: 23406093 [TBL] [Abstract][Full Text] [Related]
20. Uncertainty reduction in intensity modulated proton therapy by inverse Monte Carlo treatment planning. Morávek Z; Rickhey M; Hartmann M; Bogner L Phys Med Biol; 2009 Aug; 54(15):4803-19. PubMed ID: 19622848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]