These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29352882)

  • 1. Conductive bacterial cellulose-polyaniline blends: Influence of the matrix and synthesis conditions.
    Alonso E; Faria M; Mohammadkazemi F; Resnik M; Ferreira A; Cordeiro N
    Carbohydr Polym; 2018 Mar; 183():254-262. PubMed ID: 29352882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline.
    Hu W; Chen S; Yang Z; Liu L; Wang H
    J Phys Chem B; 2011 Jul; 115(26):8453-7. PubMed ID: 21671578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of polyaniline deposition on microporous cellulose ester membranes by in situ chemical polymerization.
    Qaiser AA; Hyland MM; Patterson DA
    J Phys Chem B; 2009 Nov; 113(45):14986-93. PubMed ID: 19888765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor.
    Jasim A; Ullah MW; Shi Z; Lin X; Yang G
    Carbohydr Polym; 2017 May; 163():62-69. PubMed ID: 28267519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible conductive nanocellulose combined with silicon nanoparticles and polyaniline.
    Park M; Lee D; Shin S; Kim HJ; Hyun J
    Carbohydr Polym; 2016 Apr; 140():43-50. PubMed ID: 26876826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of cellulose-based conductive fabrics with electrical conductivity and flexibility.
    Kim H; Yi JY; Kim BG; Song JE; Jeong HJ; Kim HR
    PLoS One; 2020; 15(6):e0233952. PubMed ID: 32498075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ doping enables the multifunctionalization of templately synthesized polyaniline@cellulose nanocomposites.
    Zhou Z; Yang Y; Han Y; Guo Q; Zhang X; Lu C
    Carbohydr Polym; 2017 Dec; 177():241-248. PubMed ID: 28962765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically conductive biocompatible composite aerogel based on nanofibrillated template of bacterial cellulose/polyaniline/nano-clay.
    Salehi MH; Golbaten-Mofrad H; Jafari SH; Goodarzi V; Entezari M; Hashemi M; Zamanlui S
    Int J Biol Macromol; 2021 Mar; 173():467-480. PubMed ID: 33484804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conductive bacterial cellulose by in situ laccase polymerization of aniline.
    Shim E; Su J; Noro J; Teixeira MA; Cavaco-Paulo A; Silva C; Kim HR
    PLoS One; 2019; 14(4):e0214546. PubMed ID: 30986238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial cellulose-poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites for optoelectronic applications.
    Khan S; Ul-Islam M; Khattak WA; Ullah MW; Park JK
    Carbohydr Polym; 2015; 127():86-93. PubMed ID: 25965460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface and charge transport characterization of polyaniline-cellulose acetate composite membranes.
    Qaiser AA; Hyland MM; Patterson DA
    J Phys Chem B; 2011 Feb; 115(7):1652-61. PubMed ID: 21287993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of surfactant and molarity on the properties of bacterial cellulose/polyaniline: Experimental and density functional theory.
    Hosseini H; Mousavi SM
    Carbohydr Polym; 2020 Dec; 250():116903. PubMed ID: 33049830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductive super-hydrophobic surfaces of polyaniline modified porous anodic alumina membranes.
    Chen X; Chen G; Ma Y; Li X; Jiang L; Wang F
    J Nanosci Nanotechnol; 2006 Mar; 6(3):783-6. PubMed ID: 16573137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-Nanostructured Polyaniline Assembled in Cellulose Matrix via Interfacial Polymerization for Applications in Nerve Regeneration.
    Xu D; Fan L; Gao L; Xiong Y; Wang Y; Ye Q; Yu A; Dai H; Yin Y; Cai J; Zhang L
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17090-7. PubMed ID: 27314673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview of bacterial cellulose composites: a multipurpose advanced material.
    Shah N; Ul-Islam M; Khattak WA; Park JK
    Carbohydr Polym; 2013 Nov; 98(2):1585-98. PubMed ID: 24053844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible conductive polypyrrole nanocomposite membranes based on bacterial cellulose with amphiphobicity.
    Tang L; Han J; Jiang Z; Chen S; Wang H
    Carbohydr Polym; 2015 Mar; 117():230-235. PubMed ID: 25498630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotemplate synthesis of polyaniline@cellulose nanowhiskers/natural rubber nanocomposites with 3D hierarchical multiscale structure and improved electrical conductivity.
    Wu X; Lu C; Xu H; Zhang X; Zhou Z
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21078-85. PubMed ID: 25384188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications.
    Ul-Islam M; Khan T; Park JK
    Carbohydr Polym; 2012 Aug; 89(4):1189-97. PubMed ID: 24750931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically conductive nanocomposites made from cellulose nanofibrils and polyaniline.
    Mattoso LH; Medeiros ES; Baker DA; Avloni J; Wood DF; Orts WJ
    J Nanosci Nanotechnol; 2009 May; 9(5):2917-22. PubMed ID: 19452949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ polymerized polyaniline films. 4. Film formation in dispersion polymerization of aniline.
    Riede A; Helmstedt M; Sapurina I; Stejskal J
    J Colloid Interface Sci; 2002 Apr; 248(2):413-8. PubMed ID: 16290546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.