These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 29353230)
1. A Model of Dormant-Emergent Metastatic Breast Cancer Progression Enabling Exploration of Biomarker Signatures. Clark AM; Kumar MP; Wheeler SE; Young CL; Venkataramanan R; Stolz DB; Griffith LG; Lauffenburger DA; Wells A Mol Cell Proteomics; 2018 Apr; 17(4):619-630. PubMed ID: 29353230 [TBL] [Abstract][Full Text] [Related]
2. IP-10 (CXCL10) Can Trigger Emergence of Dormant Breast Cancer Cells in a Metastatic Liver Microenvironment. Clark AM; Heusey HL; Griffith LG; Lauffenburger DA; Wells A Front Oncol; 2021; 11():676135. PubMed ID: 34123844 [TBL] [Abstract][Full Text] [Related]
3. A liver microphysiological system of tumor cell dormancy and inflammatory responsiveness is affected by scaffold properties. Clark AM; Wheeler SE; Young CL; Stockdale L; Shepard Neiman J; Zhao W; Stolz DB; Venkataramanan R; Lauffenburger D; Griffith L; Wells A Lab Chip; 2016 Dec; 17(1):156-168. PubMed ID: 27910972 [TBL] [Abstract][Full Text] [Related]
4. Modeling the Complexity of the Metastatic Niche Ex Vivo. Clark AM Methods Mol Biol; 2021; 2258():221-239. PubMed ID: 33340364 [TBL] [Abstract][Full Text] [Related]
5. An in vitro hyaluronic acid hydrogel based platform to model dormancy in brain metastatic breast cancer cells. Narkhede AA; Crenshaw JH; Crossman DK; Shevde LA; Rao SS Acta Biomater; 2020 Apr; 107():65-77. PubMed ID: 32119920 [TBL] [Abstract][Full Text] [Related]
6. An in vitro system to study tumor dormancy and the switch to metastatic growth. Barkan D; Green JE J Vis Exp; 2011 Aug; (54):. PubMed ID: 21860375 [TBL] [Abstract][Full Text] [Related]
7. Spontaneous dormancy of metastatic breast cancer cells in an all human liver microphysiologic system. Wheeler SE; Clark AM; Taylor DP; Young CL; Pillai VC; Stolz DB; Venkataramanan R; Lauffenburger D; Griffith L; Wells A Br J Cancer; 2014 Dec; 111(12):2342-50. PubMed ID: 25314052 [TBL] [Abstract][Full Text] [Related]
8. Hepatic nonparenchymal cells drive metastatic breast cancer outgrowth and partial epithelial to mesenchymal transition. Taylor DP; Clark A; Wheeler S; Wells A Breast Cancer Res Treat; 2014 Apr; 144(3):551-60. PubMed ID: 24610032 [TBL] [Abstract][Full Text] [Related]
9. Bi-directional exosome-driven intercommunication between the hepatic niche and cancer cells. Dioufa N; Clark AM; Ma B; Beckwitt CH; Wells A Mol Cancer; 2017 Nov; 16(1):172. PubMed ID: 29137633 [TBL] [Abstract][Full Text] [Related]
10. In Vitro and In Vivo Systems to Study Tumor Dormancy and the Transition to Overt Metastases Induced by the Fibrotic Milieu. Bernshtein KS; Barkan D Methods Mol Biol; 2024; 2811():27-35. PubMed ID: 39037647 [TBL] [Abstract][Full Text] [Related]
11. Luminal breast cancer metastases and tumor arousal from dormancy are promoted by direct actions of estradiol and progesterone on the malignant cells. Ogba N; Manning NG; Bliesner BS; Ambler SK; Haughian JM; Pinto MP; Jedlicka P; Joensuu K; Heikkilä P; Horwitz KB Breast Cancer Res; 2014 Dec; 16(6):489. PubMed ID: 25475897 [TBL] [Abstract][Full Text] [Related]
12. Cellular dormancy in minimal residual disease following targeted therapy. Ruth JR; Pant DK; Pan TC; Seidel HE; Baksh SC; Keister BA; Singh R; Sterner CJ; Bakewell SJ; Moody SE; Belka GK; Chodosh LA Breast Cancer Res; 2021 Jun; 23(1):63. PubMed ID: 34088357 [TBL] [Abstract][Full Text] [Related]
13. Modeling Tumor Cell Dormancy in an Ex Vivo Liver Metastatic Niche. McDonald JC; Clark AM Methods Mol Biol; 2024; 2811():37-53. PubMed ID: 39037648 [TBL] [Abstract][Full Text] [Related]
14. Statins attenuate outgrowth of breast cancer metastases. Beckwitt CH; Clark AM; Ma B; Whaley D; Oltvai ZN; Wells A Br J Cancer; 2018 Oct; 119(9):1094-1105. PubMed ID: 30401978 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Barkan D; Kleinman H; Simmons JL; Asmussen H; Kamaraju AK; Hoenorhoff MJ; Liu ZY; Costes SV; Cho EH; Lockett S; Khanna C; Chambers AF; Green JE Cancer Res; 2008 Aug; 68(15):6241-50. PubMed ID: 18676848 [TBL] [Abstract][Full Text] [Related]
16. Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells. Yang M; Ma B; Shao H; Clark AM; Wells A BMC Cancer; 2016 Jul; 16():419. PubMed ID: 27387344 [TBL] [Abstract][Full Text] [Related]
17. Gene expression predicts dormant metastatic breast cancer cell phenotype. Ren Q; Khoo WH; Corr AP; Phan TG; Croucher PI; Stewart SA Breast Cancer Res; 2022 Jan; 24(1):10. PubMed ID: 35093137 [TBL] [Abstract][Full Text] [Related]
18. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Price TT; Burness ML; Sivan A; Warner MJ; Cheng R; Lee CH; Olivere L; Comatas K; Magnani J; Kim Lyerly H; Cheng Q; McCall CM; Sipkins DA Sci Transl Med; 2016 May; 8(340):340ra73. PubMed ID: 27225183 [TBL] [Abstract][Full Text] [Related]
19. A microphysiological system model of therapy for liver micrometastases. Clark AM; Wheeler SE; Taylor DP; Pillai VC; Young CL; Prantil-Baun R; Nguyen T; Stolz DB; Borenstein JT; Lauffenburger DA; Venkataramanan R; Griffith LG; Wells A Exp Biol Med (Maywood); 2014 Sep; 239(9):1170-9. PubMed ID: 24821820 [TBL] [Abstract][Full Text] [Related]
20. Fibroblast growth factor-2, derived from cancer-associated fibroblasts, stimulates growth and progression of human breast cancer cells via FGFR1 signaling. Suh J; Kim DH; Lee YH; Jang JH; Surh YJ Mol Carcinog; 2020 Sep; 59(9):1028-1040. PubMed ID: 32557854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]