These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 29353456)
1. In Vivo Transient and Partial Cell Reprogramming to Pluripotency as a Therapeutic Tool for Neurodegenerative Diseases. Tamanini S; Comi GP; Corti S Mol Neurobiol; 2018 Aug; 55(8):6850-6862. PubMed ID: 29353456 [TBL] [Abstract][Full Text] [Related]
2. Partial Reprogramming as a Method for Regenerating Neural Tissues in Aged Organisms. Sichani AS; Khoddam S; Shakeri S; Tavakkoli Z; Jafroodi AR; Dabbaghipour R; Sisakht M; Fallahi J Cell Reprogram; 2024 Feb; 26(1):10-23. PubMed ID: 38381402 [TBL] [Abstract][Full Text] [Related]
3. Partial Reprogramming As An Emerging Strategy for Safe Induced Cell Generation and Rejuvenation. Lehmann M; Canatelli-Mallat M; Chiavellini P; Cónsole GM; Gallardo MD; Goya RG Curr Gene Ther; 2019; 19(4):248-254. PubMed ID: 31475896 [TBL] [Abstract][Full Text] [Related]
4. Transient transcription factor (OSKM) expression is key towards clinical translation of de Lázaro I; Cossu G; Kostarelos K EMBO Mol Med; 2017 Jun; 9(6):733-736. PubMed ID: 28455313 [TBL] [Abstract][Full Text] [Related]
5. Rejuvenation by Partial Reprogramming of the Epigenome. Mendelsohn AR; Larrick JW; Lei JL Rejuvenation Res; 2017 Apr; 20(2):146-150. PubMed ID: 28314379 [TBL] [Abstract][Full Text] [Related]
6. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology. Liu Y; Deng W Brain Res; 2016 May; 1638(Pt A):30-41. PubMed ID: 26423934 [TBL] [Abstract][Full Text] [Related]
7. Cell reprogramming: Therapeutic potential and the promise of rejuvenation for the aging brain. López-León M; Outeiro TF; Goya RG Ageing Res Rev; 2017 Nov; 40():168-181. PubMed ID: 28903069 [TBL] [Abstract][Full Text] [Related]
8. Genetic reprogramming of somatic cells into neuroblasts through a co-induction of the doublecortin gene along the Yamanaka factors: A promising approach to model neuroregenerative disorders. Kandasamy M; Yesudhas A; Poornimai Abirami GP; Radhakrishnan RK; Roshan SA; Johnson E; Ravichandran VR; Biswas A; Shanmugaapriya S; Anusuyadevi M; Aigner L Med Hypotheses; 2019 Jun; 127():105-111. PubMed ID: 31088631 [TBL] [Abstract][Full Text] [Related]
9. Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Chondronasiou D; Gill D; Mosteiro L; Urdinguio RG; Berenguer-Llergo A; Aguilera M; Durand S; Aprahamian F; Nirmalathasan N; Abad M; Martin-Herranz DE; Stephan-Otto Attolini C; Prats N; Kroemer G; Fraga MF; Reik W; Serrano M Aging Cell; 2022 Mar; 21(3):e13578. PubMed ID: 35235716 [TBL] [Abstract][Full Text] [Related]
10. Spermatogonial stem cells and progenitors are refractory to reprogramming to pluripotency by the transcription factors Oct3/4, c-Myc, Sox2 and Klf4. Corbineau S; Lassalle B; Givelet M; Souissi-Sarahoui I; Firlej V; Romeo PH; Allemand I; Riou L; Fouchet P Oncotarget; 2017 Feb; 8(6):10050-10063. PubMed ID: 28052023 [TBL] [Abstract][Full Text] [Related]
11. The therapeutic potential of cell identity reprogramming for the treatment of aging-related neurodegenerative disorders. Smith DK; He M; Zhang CL; Zheng JC Prog Neurobiol; 2017 Oct; 157():212-229. PubMed ID: 26844759 [TBL] [Abstract][Full Text] [Related]
12. Reduction of Fibrosis and Scar Formation by Partial Reprogramming In Vivo. Doeser MC; Schöler HR; Wu G Stem Cells; 2018 Aug; 36(8):1216-1225. PubMed ID: 29761584 [TBL] [Abstract][Full Text] [Related]
13. Pluripotency, Differentiation, and Reprogramming: A Gene Expression Dynamics Model with Epigenetic Feedback Regulation. Miyamoto T; Furusawa C; Kaneko K PLoS Comput Biol; 2015 Aug; 11(8):e1004476. PubMed ID: 26308610 [TBL] [Abstract][Full Text] [Related]
14. Progress and Challenges of Cell Replacement Therapy for Neurodegenerative Diseases Based on Direct Neural Reprogramming. Chen Y; Pu J; Zhang B Hum Gene Ther; 2016 Dec; 27(12):962-970. PubMed ID: 27589383 [TBL] [Abstract][Full Text] [Related]
15. A molecular signature defining exercise adaptation with ageing and in vivo partial reprogramming in skeletal muscle. Jones RG; Dimet-Wiley A; Haghani A; da Silva FM; Brightwell CR; Lim S; Khadgi S; Wen Y; Dungan CM; Brooke RT; Greene NP; Peterson CA; McCarthy JJ; Horvath S; Watowich SJ; Fry CS; Murach KA J Physiol; 2023 Feb; 601(4):763-782. PubMed ID: 36533424 [TBL] [Abstract][Full Text] [Related]
16. Neuronal Reprogramming for Tissue Repair and Neuroregeneration. Liou RH; Edwards TL; Martin KR; Wong RC Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32560072 [TBL] [Abstract][Full Text] [Related]
17. Reprogramming and carcinogenesis--parallels and distinctions. Wasik AM; Grabarek J; Pantovic A; Cieślar-Pobuda A; Asgari HR; Bundgaard-Nielsen C; Rafat M; Dixon IM; Ghavami S; Łos MJ Int Rev Cell Mol Biol; 2014; 308():167-203. PubMed ID: 24411172 [TBL] [Abstract][Full Text] [Related]
18. In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming. Ocampo A; Reddy P; Martinez-Redondo P; Platero-Luengo A; Hatanaka F; Hishida T; Li M; Lam D; Kurita M; Beyret E; Araoka T; Vazquez-Ferrer E; Donoso D; Roman JL; Xu J; Rodriguez Esteban C; Nuñez G; Nuñez Delicado E; Campistol JM; Guillen I; Guillen P; Izpisua Belmonte JC Cell; 2016 Dec; 167(7):1719-1733.e12. PubMed ID: 27984723 [TBL] [Abstract][Full Text] [Related]