These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29353521)

  • 41. Synthesis of ZnWO
    Zhang Z; Shao S; Dang J; Lu C; Qin F; Guan W
    Water Sci Technol; 2018 Mar; 77(5-6):1204-1212. PubMed ID: 29528308
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of Curcumin Capped Copper Nanoparticles as Possible Inhibitors of Human Breast Cancer Cells and Angiogenesis: a Comparative Study with Native Curcumin.
    Kamble S; Utage B; Mogle P; Kamble R; Hese S; Dawane B; Gacche R
    AAPS PharmSciTech; 2016 Oct; 17(5):1030-41. PubMed ID: 26729534
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis.
    Caglar Y; Gorgun K; Aksoy S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():617-22. PubMed ID: 25541399
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel approach to low-temperature synthesis of cubic HfO
    Kumar N; George BPA; Abrahamse H; Parashar V; Ray SS; Ngila JC
    Sci Rep; 2017 Aug; 7(1):9351. PubMed ID: 28839143
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Potentiating angiogenesis arrest in vivo via laser irradiation of peptide functionalised gold nanoparticles.
    Pedrosa P; Heuer-Jungemann A; Kanaras AG; Fernandes AR; Baptista PV
    J Nanobiotechnology; 2017 Nov; 15(1):85. PubMed ID: 29162137
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancement of gas-sensing abilities in p-type ZnWO4 by local modification of Pt nanoparticles.
    Li C; Liang Y; Mao J; Ling L; Cui Z; Yang X; Zhu S; Li Z
    Anal Chim Acta; 2016 Jul; 927():107-16. PubMed ID: 27237843
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay.
    Motshekga SC; Ray SS; Onyango MS; Momba MN
    J Hazard Mater; 2013 Nov; 262():439-46. PubMed ID: 24076479
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photocatalytic and antibacterial properties of phytosynthesized CeO2 NPs using Moringa oleifera peel extract.
    Surendra TV; Roopan SM
    J Photochem Photobiol B; 2016 Aug; 161():122-8. PubMed ID: 27236047
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.
    Dahal N; García S; Zhou J; Humphrey SM
    ACS Nano; 2012 Nov; 6(11):9433-46. PubMed ID: 23033897
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications.
    Fouda A; El-Din Hassan S; Salem SS; Shaheen TI
    Microb Pathog; 2018 Dec; 125():252-261. PubMed ID: 30240818
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection.
    Song J; Xu L; Zhou C; Xing R; Dai Q; Liu D; Song H
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12928-34. PubMed ID: 24182328
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Facile and rapid synthesis of pyrochlore W2O6 x H2O nanoplate via a fluorinion-assisted hydrothermal process.
    Zheng H; Liang S; Wu W; Ding Z; Wu L
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2573-6. PubMed ID: 24745265
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Size controlled ultrafine CeO
    Al-Shawafi WM; Salah N; Alshahrie A; Ahmed YM; Moselhy SS; Hammad AH; Hussain MA; Memic A
    J Mater Sci Mater Med; 2017 Sep; 28(11):177. PubMed ID: 28956214
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chitosan coated tungsten trioxide nanoparticles as a contrast agent for X-ray computed tomography.
    Firouzi M; Poursalehi R; Delavari H H; Saba F; Oghabian MA
    Int J Biol Macromol; 2017 May; 98():479-485. PubMed ID: 28174086
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Data on SEM and TEM of controllable construction of ZnWO
    He H; Luo Z; Tang ZY; Yu C
    Data Brief; 2019 Aug; 25():104218. PubMed ID: 31367658
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrochemical synthesis, photodegradation and antibacterial properties of PEG capped zinc oxide nanoparticles.
    Jose A; Sunaja Devi KR; Pinheiro D; Lakshmi Narayana S
    J Photochem Photobiol B; 2018 Oct; 187():25-34. PubMed ID: 30096540
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata.
    Joseph S; Mathew B
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1371-9. PubMed ID: 25459695
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Solution growth of 1D zinc tungstate (ZnWO
    Shad NA; Bajwa SZ; Amin N; Taj A; Hameed S; Khan Y; Dai Z; Cao C; Khan WS
    J Hazard Mater; 2019 Apr; 367():205-214. PubMed ID: 30594721
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of thermal annealing on the phase evolution of silver tungstate in Ag/WO₃ films.
    Bose RJ; Sreedharan RS; Krishnan RR; Reddy VR; Gupta M; Ganesan V; Sudheer SK; Pillai VPM
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 145():239-244. PubMed ID: 25791880
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microporous Co@CoO nanoparticles with superior microwave absorption properties.
    Liu T; Pang Y; Zhu M; Kobayashi S
    Nanoscale; 2014 Feb; 6(4):2447-54. PubMed ID: 24452196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.