BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 29353741)

  • 1. Simulating the effect of muscle weakness and contracture on neuromuscular control of normal gait in children.
    Fox AS; Carty CP; Modenese L; Barber LA; Lichtwark GA
    Gait Posture; 2018 Mar; 61():169-175. PubMed ID: 29353741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of backward-downhill treadmill training versus manual static plantarflexor stretching on muscle-joint pathology and function in children with spastic Cerebral Palsy.
    Hösl M; Böhm H; Eck J; Döderlein L; Arampatzis A
    Gait Posture; 2018 Sep; 65():121-128. PubMed ID: 30558918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting gait adaptations due to ankle plantarflexor muscle weakness and contracture using physics-based musculoskeletal simulations.
    Ong CF; Geijtenbeek T; Hicks JL; Delp SL
    PLoS Comput Biol; 2019 Oct; 15(10):e1006993. PubMed ID: 31589597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plantarflexor muscle and spatiotemporal gait characteristics of children with hemiplegic cerebral palsy: an observational study.
    Crosbie J; Alhusaini AA; Dean CM; Shepherd RB
    Dev Neurorehabil; 2012; 15(2):114-8. PubMed ID: 22494083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achilles tendon length and medial gastrocnemius architecture in children with cerebral palsy and equinus gait.
    Wren TA; Cheatwood AP; Rethlefsen SA; Hara R; Perez FJ; Kay RM
    J Pediatr Orthop; 2010; 30(5):479-84. PubMed ID: 20574267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of maximum isometric muscle force scaling on estimated muscle forces from musculoskeletal models of children with cerebral palsy.
    Kainz H; Goudriaan M; Falisse A; Huenaerts C; Desloovere K; De Groote F; Jonkers I
    Gait Posture; 2018 Sep; 65():213-220. PubMed ID: 30558934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prolonged stretching of the ankle plantarflexors elicits muscle-tendon adaptations relevant to ankle gait kinetics in children with spastic cerebral palsy.
    Martín Lorenzo T; Rocon E; Martínez Caballero I; Ramírez Barragán A; Lerma Lara S
    Med Hypotheses; 2017 Nov; 109():65-69. PubMed ID: 29150297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Walking speed modifies spasticity effects in gastrocnemius and soleus in cerebral palsy gait.
    van der Krogt MM; Doorenbosch CA; Becher JG; Harlaar J
    Clin Biomech (Bristol, Avon); 2009 Jun; 24(5):422-8. PubMed ID: 19349103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The association between premature plantarflexor muscle activity, muscle strength, and equinus gait in patients with various pathologies.
    Schweizer K; Romkes J; Brunner R
    Res Dev Disabil; 2013 Sep; 34(9):2676-83. PubMed ID: 23764825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility and reliability of using an exoskeleton to emulate muscle contractures during walking.
    Attias M; Bonnefoy-Mazure A; De Coulon G; Cheze L; Armand S
    Gait Posture; 2016 Oct; 50():239-245. PubMed ID: 27665088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive evaluation of the variation in ankle function during gait in children and youth with Charcot-Marie-Tooth disease.
    Õunpuu S; Garibay E; Solomito M; Bell K; Pierz K; Thomson J; Acsadi G; DeLuca P
    Gait Posture; 2013 Sep; 38(4):900-6. PubMed ID: 23702343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How much muscle strength is required to walk in a crouch gait?
    Steele KM; van der Krogt MM; Schwartz MH; Delp SL
    J Biomech; 2012 Oct; 45(15):2564-9. PubMed ID: 22959837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relation between spasticity and muscle behavior during the swing phase of gait in children with cerebral palsy.
    Bar-On L; Molenaers G; Aertbeliën E; Monari D; Feys H; Desloovere K
    Res Dev Disabil; 2014 Dec; 35(12):3354-64. PubMed ID: 25240217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a method to scale muscle strength for gait simulations of children with cerebral palsy.
    Hegarty AK; Hulbert TV; Kurz MJ; Stuberg W; Silverman AK
    J Biomech; 2019 Jan; 83():165-173. PubMed ID: 30545605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individual muscle force-energy rate is altered during crouch gait: A neuro-musculoskeletal evaluation.
    Ravera EP; Crespo MJ; Rozumalski A
    J Biomech; 2022 Jun; 139():111141. PubMed ID: 35609492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ankle dorsiflexor function after plantar flexor surgery in children with cerebral palsy.
    Davids JR; Rogozinski BM; Hardin JW; Davis RB
    J Bone Joint Surg Am; 2011 Dec; 93(23):e1381-7. PubMed ID: 22159860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does crouch alter the effects of neuromuscular impairments on gait? A simulation study.
    Kuska EC; Steele KM
    J Biomech; 2024 Mar; 165():112015. PubMed ID: 38394953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of mono- versus multi-segment musculoskeletal models of the foot on simulated triceps surae lengths in pathological and healthy gait.
    Zandbergen MA; Schallig W; Stebbins JA; Harlaar J; van der Krogt MM
    Gait Posture; 2020 Mar; 77():14-19. PubMed ID: 31951914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Number of synergies impacts sensitivity of gait to weakness and contracture.
    Kuska EC; Mehrabi N; Schwartz MH; Steele KM
    J Biomech; 2022 Mar; 134():111012. PubMed ID: 35219146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuro-musculoskeletal simulation of instrumented contracture and spasticity assessment in children with cerebral palsy.
    van der Krogt MM; Bar-On L; Kindt T; Desloovere K; Harlaar J
    J Neuroeng Rehabil; 2016 Jul; 13(1):64. PubMed ID: 27423898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.