These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 29353937)
1. An Investigation of the Potential Antifungal Properties of CNC-2 in Zehrbach AMD; Rogers AR; Tarr DEK J Nematol; 2017 Dec; 49(4):472-476. PubMed ID: 29353937 [No Abstract] [Full Text] [Related]
2. Comparative Genomic Analysis of Drechmeria coniospora Reveals Core and Specific Genetic Requirements for Fungal Endoparasitism of Nematodes. Lebrigand K; He LD; Thakur N; Arguel MJ; Polanowska J; Henrissat B; Record E; Magdelenat G; Barbe V; Raffaele S; Barbry P; Ewbank JJ PLoS Genet; 2016 May; 12(5):e1006017. PubMed ID: 27153332 [TBL] [Abstract][Full Text] [Related]
3. Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-beta signaling pathway in Caenorhabditis elegans epidermis. Zugasti O; Ewbank JJ Nat Immunol; 2009 Mar; 10(3):249-56. PubMed ID: 19198592 [TBL] [Abstract][Full Text] [Related]
4. Adhesion of Conidia of Drechmeria coniospora to Caenorhabditis elegans Wild Type and Mutants. Jansson HB J Nematol; 1994 Dec; 26(4):430-5. PubMed ID: 19279912 [TBL] [Abstract][Full Text] [Related]
5. Pathogenesis of the Candida parapsilosis Complex in the Model Host Caenorhabditis elegans. Souza ACR; Fuchs BB; Alves VS; Jayamani E; Colombo AL; Mylonakis E Genes (Basel); 2018 Aug; 9(8):. PubMed ID: 30096852 [No Abstract] [Full Text] [Related]
6. Polyethylene Glycol-mediated Transformation of He LD; Ewbank JJ Bio Protoc; 2017 Mar; 7(5):e2157. PubMed ID: 34458471 [No Abstract] [Full Text] [Related]
7. The pseudokinase NIPI-4 is a novel regulator of antimicrobial peptide gene expression. Labed SA; Omi S; Gut M; Ewbank JJ; Pujol N PLoS One; 2012; 7(3):e33887. PubMed ID: 22470487 [TBL] [Abstract][Full Text] [Related]
8. Thymol has antifungal activity against Candida albicans during infection and maintains the innate immune response required for function of the p38 MAPK signaling pathway in Caenorhabditis elegans. Shu C; Sun L; Zhang W Immunol Res; 2016 Aug; 64(4):1013-24. PubMed ID: 26783030 [TBL] [Abstract][Full Text] [Related]
10. B. subtilis GS67 protects C. elegans from Gram-positive pathogens via fengycin-mediated microbial antagonism. Iatsenko I; Yim JJ; Schroeder FC; Sommer RJ Curr Biol; 2014 Nov; 24(22):2720-7. PubMed ID: 25448001 [TBL] [Abstract][Full Text] [Related]
11. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. Breger J; Fuchs BB; Aperis G; Moy TI; Ausubel FM; Mylonakis E PLoS Pathog; 2007 Feb; 3(2):e18. PubMed ID: 17274686 [TBL] [Abstract][Full Text] [Related]
12. Increased Pathogenicity of the Nematophagous Fungus Courtine D; Zhang X; Ewbank JJ Front Fungal Biol; 2021; 2():778882. PubMed ID: 37744153 [TBL] [Abstract][Full Text] [Related]
13. Human lactoferrin-derived peptide's antifungal activities against disseminated Candida albicans infection. Lupetti A; Brouwer CP; Bogaards SJ; Welling MM; de Heer E; Campa M; van Dissel JT; Friesen RH; Nibbering PH J Infect Dis; 2007 Nov; 196(9):1416-24. PubMed ID: 17922408 [TBL] [Abstract][Full Text] [Related]
14. Insights into Adaptations to a Near-Obligate Nematode Endoparasitic Lifestyle from the Finished Genome of Drechmeria coniospora. Zhang L; Zhou Z; Guo Q; Fokkens L; Miskei M; Pócsi I; Zhang W; Chen M; Wang L; Sun Y; Donzelli BG; Gibson DM; Nelson DR; Luo JG; Rep M; Liu H; Yang S; Wang J; Krasnoff SB; Xu Y; Molnár I; Lin M Sci Rep; 2016 Mar; 6():23122. PubMed ID: 26975455 [TBL] [Abstract][Full Text] [Related]
15. The importance of being regular: Caenorhabditis elegans and Pristionchus pacificus defecation mutants are hypersusceptible to bacterial pathogens. Rae R; Witte H; Rödelsperger C; Sommer RJ Int J Parasitol; 2012 Jul; 42(8):747-53. PubMed ID: 22705203 [TBL] [Abstract][Full Text] [Related]
16. Changes in Caenorhabditis elegans immunity and Staphylococcal virulence factors during their interactions. JebaMercy G; Prithika U; Lavanya N; Sekar C; Balamurugan K Gene; 2015 Mar; 558(1):159-72. PubMed ID: 25554524 [TBL] [Abstract][Full Text] [Related]
17. Escherichia coli O157:H7 LPS O-side chains and pO157 are required for killing Caenorhabditis elegans. Youn M; Lee KM; Kim SH; Lim J; Yoon JW; Park S Biochem Biophys Res Commun; 2013 Jul; 436(3):388-93. PubMed ID: 23747730 [TBL] [Abstract][Full Text] [Related]
18. Candida tropicalis from veterinary and human sources shows similar in vitro hemolytic activity, antifungal biofilm susceptibility and pathogenesis against Caenorhabditis elegans. Brilhante RSN; Oliveira JS; Evangelista AJJ; Serpa R; Silva ALD; Aguiar FRM; Pereira VS; Castelo-Branco DSCM; Pereira-Neto WA; Cordeiro RA; Sidrim JJC; Rocha MFG Vet Microbiol; 2016 Aug; 192():213-219. PubMed ID: 27527785 [TBL] [Abstract][Full Text] [Related]
19. Antifungal activity of a β-peptide in synthetic urine media: Toward materials-based approaches to reducing catheter-associated urinary tract fungal infections. Raman N; Lee MR; Rodríguez López AL; Palecek SP; Lynn DM Acta Biomater; 2016 Oct; 43():240-250. PubMed ID: 27422198 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of bacterial and fungal pathogens by the orphaned drug auranofin. Fuchs BB; RajaMuthiah R; Souza AC; Eatemadpour S; Rossoni RD; Santos DA; Junqueira JC; Rice LB; Mylonakis E Future Med Chem; 2016; 8(2):117-32. PubMed ID: 26808006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]