These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29353991)

  • 1. Trends in Austrian Resource Efficiency: An Exergy and Useful Work Analysis in Comparison to Material Use, CO
    Eisenmenger N; Warr B; Magerl A
    J Ind Ecol; 2017 Oct; 21(5):1250-1261. PubMed ID: 29353991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigation of CO2 emissions from the EU-15 building stock: beyond the EU Directive on the Energy Performance of Buildings.
    Petersdorff C; Boermans T; Harnisch J
    Environ Sci Pollut Res Int; 2006 Sep; 13(5):350-8. PubMed ID: 17067030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Analysis of Energy and Exergy Performance of Hydrogen Production Methods.
    Martínez-Rodríguez A; Abánades A
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do material efficiency improvements backfire?: Insights from an index decomposition analysis about the link between CO
    Plank B; Eisenmenger N; Schaffartzik A
    J Ind Ecol; 2021 Apr; 25(2):511-522. PubMed ID: 34220182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing global resource utilization efficiency in the industrial sector.
    Rosen MA
    Sci Total Environ; 2013 Sep; 461-462():804-7. PubMed ID: 23235273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resource recovery from residual household waste: An application of exergy flow analysis and exergetic life cycle assessment.
    Laner D; Rechberger H; De Soete W; De Meester S; Astrup TF
    Waste Manag; 2015 Dec; 46():653-67. PubMed ID: 26384560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental costs and renewable energy: re-visiting the Environmental Kuznets Curve.
    López-Menéndez AJ; Pérez R; Moreno B
    J Environ Manage; 2014 Dec; 145():368-73. PubMed ID: 25124789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exergy: its potential and limitations in environmental science and technology.
    Dewulf J; Van Langenhove H; Muys B; Bruers S; Bakshi BR; Grubb GF; Paulus DM; Sciubba E
    Environ Sci Technol; 2008 Apr; 42(7):2221-32. PubMed ID: 18504947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining national greenhouse gas emissions from waste-to-energy using the Balance Method.
    Schwarzböck T; Rechberger H; Cencic O; Fellner J
    Waste Manag; 2016 Mar; 49():263-271. PubMed ID: 26847720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the Second Law of Thermodynamics in Brazilian Residential Appliances towards a Rational Use of Energy.
    Keutenedjian Mady CE; Reis Pinto C; Torelli Reis Martins Pereira M
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency dilution: long-term exergy conversion trends in Japan.
    Williams E; Warr B; Ayres RU
    Environ Sci Technol; 2008 Jul; 42(13):4964-70. PubMed ID: 18678034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy and exergy analyses of an integrated gasification combined cycle power plant with CO2 capture using hot potassium carbonate solvent.
    Li S; Jin H; Gao L; Mumford KA; Smith K; Stevens G
    Environ Sci Technol; 2014 Dec; 48(24):14814-21. PubMed ID: 25389800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a sustainable environment: Nexus between CO
    Bekun FV; Alola AA; Sarkodie SA
    Sci Total Environ; 2019 Mar; 657():1023-1029. PubMed ID: 30677870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical enhanced oil recovery and the dilemma of more and cleaner energy.
    Farajzadeh R; Kahrobaei S; Eftekhari AA; Mjeni RA; Boersma D; Bruining J
    Sci Rep; 2021 Jan; 11(1):829. PubMed ID: 33436884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An innovative application of extended exergy analysis into an industrial park.
    Fan Y; Qiao Q; Fang L
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11779-11788. PubMed ID: 28337629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of ICT, financial development, growth, and trade openness on CO
    Park Y; Meng F; Baloch MA
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30708-30719. PubMed ID: 30178410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cumulative exergy extraction from the natural environment (CEENE): a comprehensive life cycle impact assessment method for resource accounting.
    Dewulf J; Bösch ME; De Meester B; Van der Vorst G; Van Langenhove H; Hellweg S; Huijbregts MA
    Environ Sci Technol; 2007 Dec; 41(24):8477-83. PubMed ID: 18200882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring frame conflicts in the development of a new mineral resource policy in Austria using Q-methodology.
    Kügerl MT; Endl A; Tost M; Ammerer G; Hartlieb P; Gugerell K
    Ambio; 2023 Jan; 52(1):210-228. PubMed ID: 36114942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO
    Albulescu CT; Artene AE; Luminosu CT; Tămășilă M
    Environ Sci Pollut Res Int; 2020 Sep; 27(27):33615-33635. PubMed ID: 31473925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.