BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 29354339)

  • 1. One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon-carbon nanotube hybrids.
    Lobiak EV; Bulusheva LG; Fedorovskaya EO; Shubin YV; Plyusnin PE; Lonchambon P; Senkovskiy BV; Ismagilov ZR; Flahaut E; Okotrub AV
    Beilstein J Nanotechnol; 2017; 8():2669-2679. PubMed ID: 29354339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal Activation of Porous Nitrogen-Doped Carbon Materials for Electrochemical Capacitors and Sodium-Ion Batteries.
    Fedoseeva YV; Lobiak EV; Shlyakhova EV; Kovalenko KA; Kuznetsova VR; Vorfolomeeva AA; Grebenkina MA; Nishchakova AD; Makarova AA; Bulusheva LG; Okotrub AV
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33138180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Templated and Catalytic Fabrication of N-Doped Hierarchical Porous Carbon-Carbon Nanotube Hybrids as Host for Lithium-Sulfur Batteries.
    Cai J; Wu C; Yang S; Zhu Y; Shen PK; Zhang K
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33876-33886. PubMed ID: 28914524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of Hybrid Electrode Material Synthesis for Energy Accumulators Based on Carbon Nanotubes and Porous Structures.
    Malozyomov BV; Kukartsev VV; Martyushev NV; Kondratiev VV; Klyuev RV; Karlina AI
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.
    Vinayan BP; Ramaprabhu S
    Nanoscale; 2013 Jun; 5(11):5109-18. PubMed ID: 23644681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Application of Carbon-Layer-Stabilized, Nitrogen-Doped, Bamboo-Like Carbon Nanotube Catalysts in CO
    Sikora E; Prekob Á; Halasi G; Vanyorek L; Pekker P; Kristály F; Varga T; Kiss J; Kónya Z; Viskolcz B
    ChemistryOpen; 2018 Oct; 7(10):789-796. PubMed ID: 30324080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of MnO
    Lin Z; Xiang X; Chen K; Peng S; Jiang X; Hou L
    J Colloid Interface Sci; 2019 Mar; 540():466-475. PubMed ID: 30665170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobalt and nitrogen co-doped porous carbon/carbon nanotube hybrids anchored with nickel nanoparticles as high-performance electrocatalysts for oxygen reduction reactions.
    Wu Y; Ge L; Veksha A; Lisak G
    Nanoscale; 2020 Jun; 12(24):13028-13033. PubMed ID: 32537620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Step Chemical Vapor Deposition Synthesis of 3D N-doped Carbon Nanotube/N-doped Graphene Hybrid Material on Nickel Foam.
    Li HF; Wu F; Wang C; Zhang PX; Hu HY; Xie N; Pan M; Zeng Z; Deng S; Wu MH; Vinodgopal K; Dai GP
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30205489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical Expansion of Layered Graphene Oxide Nanosheets by Chemical Vapor Deposition of Metal-Organic Frameworks and their Thermal Conversion into Nitrogen-Doped Porous Carbons for Supercapacitor Applications.
    Amer WA; Wang J; Ding B; Li T; Allah AE; Zakaria MB; Henzie J; Yamauchi Y
    ChemSusChem; 2020 Mar; 13(6):1629-1636. PubMed ID: 31328401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal Doping Effect of the M-Co2P/Nitrogen-Doped Carbon Nanotubes (M = Fe, Ni, Cu) Hydrogen Evolution Hybrid Catalysts.
    Pan Y; Liu Y; Lin Y; Liu C
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13890-901. PubMed ID: 27197546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Synthesis of Nitrogen-Containing Bio-Phenol Resin and Its Molten Salt Activation of Porous Carbon for Supercapacitor Electrode.
    Ai T; Wang Z; Zhang H; Hong F; Yan X; Su X
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31226794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Synthesis of Fe/nitrogen-doped Carbon Nanotube/Nanoparticle Composite and Its Catalytic Performance in Oxygen Reduction].
    Yang TT; Zhu NW; Lu Y; Wu PX
    Huan Jing Ke Xue; 2016 Jan; 37(1):350-8. PubMed ID: 27078977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal catalyst adsorption effects in the growth of carbon nanostructures on mesoporous material.
    Marchi MC; Acuña JJ; Figueroa CA
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6439-44. PubMed ID: 22962761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism.
    He M; Zhou S; Zhang J; Liu Z; Robinson C
    J Phys Chem B; 2005 May; 109(19):9275-9. PubMed ID: 16852108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ex-situ nitrogen-doped porous carbons as electrode materials for high performance supercapacitor.
    Sylla NF; Ndiaye NM; Ngom BD; Mutuma BK; Momodu D; Chaker M; Manyala N
    J Colloid Interface Sci; 2020 Jun; 569():332-345. PubMed ID: 32126346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Graphitic Mesoporous Fe,N-Doped Carbon Materials for Oxygen Reduction Electrochemical Catalysts.
    Kim D; Zussblatt NP; Chung HT; Becwar SM; Zelenay P; Chmelka BF
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25337-25349. PubMed ID: 30036030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic Effects of Active Sites' Nature and Hydrophilicity on the Oxygen Reduction Reaction Activity of Pt-Free Catalysts.
    Longhi M; Cova C; Pargoletti E; Coduri M; Santangelo S; Patanè S; Ditaranto N; Cioffi N; Facibeni A; Scavini M
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30135359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes.
    Zhou LP; Ohta K; Kuroda K; Lei N; Matsuishi K; Gao L; Matsumoto T; Nakamura J
    J Phys Chem B; 2005 Mar; 109(10):4439-47. PubMed ID: 16851515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise control of the number of walls formed during carbon nanotube growth using chemical vapor deposition.
    Yang HS; Zhang L; Dong XH; Zhu WM; Zhu J; Nelson BJ; Zhang XB
    Nanotechnology; 2012 Feb; 23(6):065604. PubMed ID: 22248487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.