BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 29354339)

  • 21. Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes.
    Tali SA; Soleimani-Amiri S; Sanaee Z; Mohajerzadeh S
    Sci Rep; 2017 Feb; 7():42425. PubMed ID: 28186204
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of Hybrid Carbon Materials Consisting of N-Doped Microporous Carbon and Amorphous Carbon Nanotubes.
    Zielinski W; Kamedulski P; Smolarkiewicz-Wyczachowski A; Skorupska M; Lukaszewicz JP; Ilnicka A
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32640535
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes.
    Cruz-Silva E; Cullen DA; Gu L; Romo-Herrera JM; Muñoz-Sandoval E; López-Urías F; Sumpter BG; Meunier V; Charlier JC; Smith DJ; Terrones H; Terrones M
    ACS Nano; 2008 Mar; 2(3):441-8. PubMed ID: 19206568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. N-Doped Porous Carbon Nanofibers/Porous Silver Network Hybrid for High-Rate Supercapacitor Electrode.
    Meng Q; Qin K; Ma L; He C; Liu E; He F; Shi C; Li Q; Li J; Zhao N
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30832-30839. PubMed ID: 28829117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents.
    Sui ZY; Meng YN; Xiao PW; Zhao ZQ; Wei ZX; Han BH
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1431-8. PubMed ID: 25545306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-, Ni-, and Cu-Doped Fe-Based Catalysts for the Microwave-Assisted Catalytic Pyrolysis of Polyethylene.
    Zhang B; Li Y; Lu S; Hu Y; Li Y; Wang S; Liu J; Tang T; Li S
    ChemSusChem; 2024 Apr; 17(7):e202301563. PubMed ID: 38361394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile design of ultrafine Co
    Li M; Yang J; Lu M; Zhang Y; Bo X
    J Colloid Interface Sci; 2019 Nov; 555():449-459. PubMed ID: 31400537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advanced Functional Carbons and Their Hybrid Nanoarchitectures towards Supercapacitor Applications.
    Young C; Park T; Yi JW; Kim J; Hossain MSA; Kaneti YV; Yamauchi Y
    ChemSusChem; 2018 Oct; 11(20):3546-3558. PubMed ID: 30156750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomass based iron and nitrogen co-doped 3D porous carbon as an efficient oxygen reduction catalyst.
    Xu Z; Ma J; Shi M; Xie Y; Feng C
    J Colloid Interface Sci; 2018 Aug; 523():144-150. PubMed ID: 29614423
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Zhao J; Liu C; Xiang K; Cheng Q; Li Y; Lin H; Lee KT; An L; Tang S; Cao YC; Liang J
    J Nanosci Nanotechnol; 2018 Oct; 18(10):6949-6956. PubMed ID: 29954515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functionalization of nitrogen-doped carbon nanotubes with gallium to form Ga-CN(x)-multi-wall carbon nanotube hybrid materials.
    Simmons TJ; Hashim DP; Zhan X; Bravo-Sanchez M; Hahm MG; López-Luna E; Linhardt RJ; Ajayan PM; Navarro-Contreras H; Vidal MA
    Nanotechnology; 2012 Aug; 23(32):325601. PubMed ID: 22825368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-for-one strategy: Three-dimensional porous Fe-doped Co
    Cheng L; Zhang Q; Xu M; Zhai Q; Zhang C
    J Colloid Interface Sci; 2021 Feb; 583():299-309. PubMed ID: 33007586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anomalous electrochemical dissolution and passivation of iron growth catalysts in carbon nanotubes.
    Lyon JL; Stevenson KJ
    Langmuir; 2007 Oct; 23(22):11311-8. PubMed ID: 17910488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical Vapor Deposition-Grown Nickel-Encapsulated N-Doped Carbon Nanotubes as a Highly Active Oxygen Reduction Reaction Catalyst without Direct Metal-Nitrogen Coordination.
    Ganguly D; Sundara R; Ramanujam K
    ACS Omega; 2018 Oct; 3(10):13609-13620. PubMed ID: 31458066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries.
    Wang S; Zhao X; Cochell T; Manthiram A
    J Phys Chem Lett; 2012 Aug; 3(16):2164-7. PubMed ID: 26295765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance of Partially Exfoliated Nitrogen-Doped Carbon Nanotubes Wrapped with Hierarchical Porous Carbon in Electrolytes.
    Mangisetti SR; Pari B; M K; Ramaprabhu S
    ChemSusChem; 2018 May; 11(10):1664-1677. PubMed ID: 29693315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced Electrochemical Performance of Carbon Nanotube with Nitrogen and Iron Using Liquid Phase Plasma Process for Supercapacitor Applications.
    Lee H; Kim BJ; Kim SJ; Park YK; Jung SC
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30513689
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction.
    Tian GL; Zhao MQ; Yu D; Kong XY; Huang JQ; Zhang Q; Wei F
    Small; 2014 Jun; 10(11):2251-9. PubMed ID: 24574006
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of fly ash as a catalyst for synthesis of carbon nanotube ribbons.
    Nath DC; Sahajwalla V
    J Hazard Mater; 2011 Aug; 192(2):691-7. PubMed ID: 21683524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D hierarchical porous hybrid nanostructure of carbon nanotubes and N-doped activated carbon.
    Kamedulski P; Zielinski W; Nowak P; Lukaszewicz JP; Ilnicka A
    Sci Rep; 2020 Nov; 10(1):18793. PubMed ID: 33139816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.