BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29355276)

  • 1. 3D printed high density, reversible, chip-to-chip microfluidic interconnects.
    Gong H; Woolley AT; Nordin GP
    Lab Chip; 2018 Feb; 18(4):639-647. PubMed ID: 29355276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High density 3D printed microfluidic valves, pumps, and multiplexers.
    Gong H; Woolley AT; Nordin GP
    Lab Chip; 2016 Jul; 16(13):2450-8. PubMed ID: 27242064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of misalignment effects in microfluidic interconnects for modular bio-analytical chip applications.
    Rani SD; Park T; You BH; Soper SA; Murphy MC; Nikitopoulos DE
    Electrophoresis; 2013 Nov; 34(20-21):2988-95. PubMed ID: 23893860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printing Solutions for Microfluidic Chip-To-World Connections.
    van den Driesche S; Lucklum F; Bunge F; Vellekoop MJ
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed Quake-style microvalves and micropumps.
    Lee YS; Bhattacharjee N; Folch A
    Lab Chip; 2018 Apr; 18(8):1207-1214. PubMed ID: 29553156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fit-to-Flow (F2F) interconnects: universal reversible adhesive-free microfluidic adaptors for lab-on-a-chip systems.
    Chen A; Pan T
    Lab Chip; 2011 Feb; 11(4):727-32. PubMed ID: 21109877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Actuation via 3D-Printed Molds toward Multiplex Biosensing of Cell Apoptosis.
    Dang BV; Hassanzadeh-Barforoushi A; Syed MS; Yang D; Kim SJ; Taylor RA; Liu GJ; Liu G; Barber T
    ACS Sens; 2019 Aug; 4(8):2181-2189. PubMed ID: 31321976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Portable all-in-one automated microfluidic system (PAMICON) with 3D-printed chip using novel fluid control mechanism.
    Zhang Y; Tseng TM; Schlichtmann U
    Sci Rep; 2021 Sep; 11(1):19189. PubMed ID: 34584118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Typography-Like 3D-Printed Templates for the Lithography-Free Fabrication of Microfluidic Chips.
    Su W; Li Y; Zhang L; Sun J; Liu S; Ding X
    SLAS Technol; 2020 Feb; 25(1):82-87. PubMed ID: 31381466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the Reusability of 3D-Printed Photopolymer Microfluidic Chips for Urine Processing.
    Lepowsky E; Amin R; Tasoglu S
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printed selectable dilution mixer pumps.
    Gong H; Woolley AT; Nordin GP
    Biomicrofluidics; 2019 Jan; 13(1):014106. PubMed ID: 30766649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printed Multimaterial Microfluidic Valve.
    Keating SJ; Gariboldi MI; Patrick WG; Sharma S; Kong DS; Oxman N
    PLoS One; 2016; 11(8):e0160624. PubMed ID: 27525809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printed Microfluidic Device with Integrated Biosensors for Online Analysis of Subcutaneous Human Microdialysate.
    Gowers SA; Curto VF; Seneci CA; Wang C; Anastasova S; Vadgama P; Yang GZ; Boutelle MG
    Anal Chem; 2015 Aug; 87(15):7763-70. PubMed ID: 26070023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rapid, reliable, and automatable lab-on-a-chip interface.
    Kortmann H; Blank LM; Schmid A
    Lab Chip; 2009 May; 9(10):1455-60. PubMed ID: 19417914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-scale PDMS fabrication strategy to bridge the size mismatch between integrated circuits and microfluidics.
    Muluneh M; Issadore D
    Lab Chip; 2014 Dec; 14(23):4552-8. PubMed ID: 25284502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printed Lego
    Nie J; Gao Q; Qiu JJ; Sun M; Liu A; Shao L; Fu JZ; Zhao P; He Y
    Biofabrication; 2018 Mar; 10(3):035001. PubMed ID: 29417931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.