These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

668 related articles for article (PubMed ID: 29355587)

  • 41. Effects of monoamines on the intrinsic excitability of lateral orbitofrontal cortex neurons in alcohol-dependent and non-dependent female mice.
    Nimitvilai S; Lopez MF; Woodward JJ
    Neuropharmacology; 2018 Jul; 137():1-12. PubMed ID: 29689260
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Withdrawal from chronic intermittent alcohol exposure increases dendritic spine density in the lateral orbitofrontal cortex of mice.
    McGuier NS; Padula AE; Lopez MF; Woodward JJ; Mulholland PJ
    Alcohol; 2015 Feb; 49(1):21-7. PubMed ID: 25468278
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of environmental enrichment on dopamine and serotonin transporters and glutamate neurotransmission in medial prefrontal and orbitofrontal cortex.
    Darna M; Beckmann JS; Gipson CD; Bardo MT; Dwoskin LP
    Brain Res; 2015 Mar; 1599():115-25. PubMed ID: 25536304
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reconciling the roles of orbitofrontal cortex in reversal learning and the encoding of outcome expectancies.
    Schoenbaum G; Saddoris MP; Stalnaker TA
    Ann N Y Acad Sci; 2007 Dec; 1121():320-35. PubMed ID: 17698988
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Brain imaging biomarkers to predict relapse in alcohol addiction.
    Volkow ND; Baler RD
    JAMA Psychiatry; 2013 Jul; 70(7):661-3. PubMed ID: 23636789
    [No Abstract]   [Full Text] [Related]  

  • 46. Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum.
    Vollstädt-Klein S; Wichert S; Rabinstein J; Bühler M; Klein O; Ende G; Hermann D; Mann K
    Addiction; 2010 Oct; 105(10):1741-9. PubMed ID: 20670348
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of juvenile chronic stress on adult cortico-accumbal function: Implications for cognition and addiction.
    Watt MJ; Weber MA; Davies SR; Forster GL
    Prog Neuropsychopharmacol Biol Psychiatry; 2017 Oct; 79(Pt B):136-154. PubMed ID: 28642080
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism for differential recruitment of orbitostriatal transmission during actions and outcomes following chronic alcohol exposure.
    Renteria R; Cazares C; Baltz ET; Schreiner DC; Yalcinbas EA; Steinkellner T; Hnasko TS; Gremel CM
    Elife; 2021 Mar; 10():. PubMed ID: 33729155
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dissociable roles for the basolateral amygdala and orbitofrontal cortex in decision-making under risk of punishment.
    Orsini CA; Trotta RT; Bizon JL; Setlow B
    J Neurosci; 2015 Jan; 35(4):1368-79. PubMed ID: 25632115
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dopamine Modulates the Functional Organization of the Orbitofrontal Cortex.
    Kahnt T; Tobler PN
    J Neurosci; 2017 Feb; 37(6):1493-1504. PubMed ID: 28069917
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of the orbitofrontal cortex in cognition and behavior.
    Jonker FA; Jonker C; Scheltens P; Scherder EJ
    Rev Neurosci; 2015; 26(1):1-11. PubMed ID: 25252749
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Medial orbitofrontal cortex gray matter is reduced in abstinent substance-dependent individuals.
    Tanabe J; Tregellas JR; Dalwani M; Thompson L; Owens E; Crowley T; Banich M
    Biol Psychiatry; 2009 Jan; 65(2):160-4. PubMed ID: 18801475
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The link between testosterone and amygdala-orbitofrontal cortex connectivity in adolescent alcohol use.
    Peters S; Jolles DJ; Van Duijvenvoorde AC; Crone EA; Peper JS
    Psychoneuroendocrinology; 2015 Mar; 53():117-26. PubMed ID: 25618591
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neuronal mechanisms in prefrontal cortex underlying adaptive choice behavior.
    Wallis JD
    Ann N Y Acad Sci; 2007 Dec; 1121():447-60. PubMed ID: 17846158
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deep brain stimulation in the lateral orbitofrontal cortex impairs spatial reversal learning.
    Klanker M; Post G; Joosten R; Feenstra M; Denys D
    Behav Brain Res; 2013 May; 245():7-12. PubMed ID: 23396148
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stochastic synaptic plasticity underlying compulsion in a model of addiction.
    Pascoli V; Hiver A; Van Zessen R; Loureiro M; Achargui R; Harada M; Flakowski J; Lüscher C
    Nature; 2018 Dec; 564(7736):366-371. PubMed ID: 30568192
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A neuronal population code for resemblance between drug and nondrug reward outcomes in the orbitofrontal cortex.
    Guillem K; Ahmed SH
    Brain Struct Funct; 2019 Mar; 224(2):883-890. PubMed ID: 30539287
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions.
    Berlin HA; Rolls ET; Kischka U
    Brain; 2004 May; 127(Pt 5):1108-26. PubMed ID: 14985269
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amygdala-orbitofrontal functional connectivity mediates the relationship between sensation seeking and alcohol use among binge-drinking adults.
    Crane NA; Gorka SM; Phan KL; Childs E
    Drug Alcohol Depend; 2018 Nov; 192():208-214. PubMed ID: 30268936
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Orbitofrontal dopaminergic dysfunction causes age-related impairment of reversal learning in rats.
    Mizoguchi K; Shoji H; Tanaka Y; Tabira T
    Neuroscience; 2010 Nov; 170(4):1110-9. PubMed ID: 20736050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.