These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 29355590)

  • 1. Targeting TGF-β signaling for the treatment of fibrosis.
    Györfi AH; Matei AE; Distler JHW
    Matrix Biol; 2018 Aug; 68-69():8-27. PubMed ID: 29355590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organ fibrosis inhibited by blocking transforming growth factor-β signaling via peroxisome proliferator-activated receptor γ agonists.
    Deng YL; Xiong XZ; Cheng NS
    Hepatobiliary Pancreat Dis Int; 2012 Oct; 11(5):467-78. PubMed ID: 23060391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring anti-TGF-β therapies in cancer and fibrosis.
    Hawinkels LJ; Ten Dijke P
    Growth Factors; 2011 Aug; 29(4):140-52. PubMed ID: 21718111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for TGF-beta modulation: a review of recent patents.
    Bonafoux D; Lee WC
    Expert Opin Ther Pat; 2009 Dec; 19(12):1759-69. PubMed ID: 19939191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting TGF-β Signaling in Kidney Fibrosis.
    Isaka Y
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30150520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-β signalling to prevent fibrosis.
    Tomcik M; Zerr P; Pitkowski J; Palumbo-Zerr K; Avouac J; Distler O; Becvar R; Senolt L; Schett G; Distler JH
    Ann Rheum Dis; 2014 Jun; 73(6):1215-22. PubMed ID: 23661493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting the TGF-β signaling pathway for fibrosis therapy: a patent review (2015-2020).
    Li X; Ding Z; Wu Z; Xu Y; Yao H; Lin K
    Expert Opin Ther Pat; 2021 Aug; 31(8):723-743. PubMed ID: 33645365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TGF-β/BMP proteins as therapeutic targets in renal fibrosis. Where have we arrived after 25 years of trials and tribulations?
    Muñoz-Félix JM; González-Núñez M; Martínez-Salgado C; López-Novoa JM
    Pharmacol Ther; 2015 Dec; 156():44-58. PubMed ID: 26493350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signaling Crosstalk of TGF-β/ALK5 and PAR2/PAR1: A Complex Regulatory Network Controlling Fibrosis and Cancer.
    Ungefroren H; Gieseler F; Kaufmann R; Settmacher U; Lehnert H; Rauch BH
    Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29795022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-canonical (non-SMAD2/3) TGF-β signaling in fibrosis: Mechanisms and targets.
    Finnson KW; Almadani Y; Philip A
    Semin Cell Dev Biol; 2020 May; 101():115-122. PubMed ID: 31883994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent progress in TGF-β inhibitors for cancer therapy.
    Huang CY; Chung CL; Hu TH; Chen JJ; Liu PF; Chen CL
    Biomed Pharmacother; 2021 Feb; 134():111046. PubMed ID: 33341049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TGF-β signaling in the kidney: profibrotic and protective effects.
    Sureshbabu A; Muhsin SA; Choi ME
    Am J Physiol Renal Physiol; 2016 Apr; 310(7):F596-F606. PubMed ID: 26739888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poricoic acid ZA, a novel RAS inhibitor, attenuates tubulo-interstitial fibrosis and podocyte injury by inhibiting TGF-β/Smad signaling pathway.
    Wang M; Chen DQ; Wang MC; Chen H; Chen L; Liu D; Zhao H; Zhao YY
    Phytomedicine; 2017 Dec; 36():243-253. PubMed ID: 29157821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment.
    Chen L; Yang T; Lu DW; Zhao H; Feng YL; Chen H; Chen DQ; Vaziri ND; Zhao YY
    Biomed Pharmacother; 2018 May; 101():670-681. PubMed ID: 29518614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New regulatory mechanisms of TGF-beta receptor function.
    Kang JS; Liu C; Derynck R
    Trends Cell Biol; 2009 Aug; 19(8):385-94. PubMed ID: 19648010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective inhibition of activin receptor-like kinase 5 signaling blocks profibrotic transforming growth factor beta responses in skin fibroblasts.
    Mori Y; Ishida W; Bhattacharyya S; Li Y; Platanias LC; Varga J
    Arthritis Rheum; 2004 Dec; 50(12):4008-21. PubMed ID: 15593186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal fibrosis is not reduced by blocking transforming growth factor-β signaling in matrix-producing interstitial cells.
    Neelisetty S; Alford C; Reynolds K; Woodbury L; Nlandu-Khodo S; Yang H; Fogo AB; Hao CM; Harris RC; Zent R; Gewin L
    Kidney Int; 2015 Sep; 88(3):503-14. PubMed ID: 25760325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TGF-β-induced fibrosis: A review on the underlying mechanism and potential therapeutic strategies.
    Ong CH; Tham CL; Harith HH; Firdaus N; Israf DA
    Eur J Pharmacol; 2021 Nov; 911():174510. PubMed ID: 34560077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutic potential of pharmacological TGF-β signaling pathway inhibitors in the pathogenesis of breast cancer.
    Khoshakhlagh M; Soleimani A; Binabaj MM; Avan A; Ferns GA; Khazaei M; Hassanian SM
    Biochem Pharmacol; 2019 Jun; 164():17-22. PubMed ID: 30905655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition.
    Yang J; Dai C; Liu Y
    J Am Soc Nephrol; 2005 Jan; 16(1):68-78. PubMed ID: 15537870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.