These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 29355654)
1. Improving release completeness from PLGA-based implants for the acid-labile model protein ovalbumin. Duque L; Körber M; Bodmeier R Int J Pharm; 2018 Mar; 538(1-2):139-146. PubMed ID: 29355654 [TBL] [Abstract][Full Text] [Related]
2. Interdependency of protein-release completeness and polymer degradation in PLGA-based implants. Ghalanbor Z; Körber M; Bodmeier R Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):624-30. PubMed ID: 23583495 [TBL] [Abstract][Full Text] [Related]
3. Formulation and characterization of injectable poly(DL-lactide-co-glycolide) implants loaded with N-acetylcysteine, a MMP inhibitor. Desai KG; Mallery SR; Schwendeman SP Pharm Res; 2008 Mar; 25(3):586-97. PubMed ID: 17891553 [TBL] [Abstract][Full Text] [Related]
4. Hot Melt Extrusion for Sustained Protein Release: Matrix Erosion and In Vitro Release of PLGA-Based Implants. Cossé A; König C; Lamprecht A; Wagner KG AAPS PharmSciTech; 2017 Jan; 18(1):15-26. PubMed ID: 27193002 [TBL] [Abstract][Full Text] [Related]
5. Development of poly (lactic-co-glycolic acid) (PLGA) based implants using hot melt extrusion (HME) for sustained release of drugs: The impacts of PLGA's material characteristics. Yang F; Stahnke R; Lawal K; Mahnen C; Duffy P; Xu S; Durig T Int J Pharm; 2024 Sep; 663():124556. PubMed ID: 39122196 [TBL] [Abstract][Full Text] [Related]
7. PLGA-based monolithic filaments prepared by hot-melt extrusion: In-vitro comparative study. Kamel R; Abbas H Ann Pharm Fr; 2018 Mar; 76(2):97-106. PubMed ID: 29145995 [TBL] [Abstract][Full Text] [Related]
8. Protein release from poly(lactide-co-glycolide) implants prepared by hot-melt extrusion: thioester formation as a reason for incomplete release. Ghalanbor Z; Körber M; Bodmeier R Int J Pharm; 2012 Nov; 438(1-2):302-6. PubMed ID: 22989984 [TBL] [Abstract][Full Text] [Related]
9. In vitro evaluation of the effects of various additives and polymers on nerve growth factor microspheres. Sun H; Xu F; Guo D; Liu G Drug Dev Ind Pharm; 2014 Apr; 40(4):452-7. PubMed ID: 23565585 [TBL] [Abstract][Full Text] [Related]
10. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization. Cun D; Jensen DK; Maltesen MJ; Bunker M; Whiteside P; Scurr D; Foged C; Nielsen HM Eur J Pharm Biopharm; 2011 Jan; 77(1):26-35. PubMed ID: 21093589 [TBL] [Abstract][Full Text] [Related]
11. Concomitant monitoring of implant formation and drug release of in situ forming poly (lactide-co-glycolide acid) implants in a hydrogel matrix mimicking the subcutis using UV-vis imaging. Sun Y; Jensen H; Petersen NJ; Larsen SW; Østergaard J J Pharm Biomed Anal; 2018 Feb; 150():95-106. PubMed ID: 29216591 [TBL] [Abstract][Full Text] [Related]
12. Improving Protein Stability and Controlling Protein Release by Adding Poly (Cyclohexane-1, 4-Diyl Acetone Dimethylene Ketal) to PLGA Microspheres. Wang C; Yu C; Yu K; Teng L; Liu J; Wang X; Sun F; Li Y Curr Drug Deliv; 2015; 12(6):726-35. PubMed ID: 25772152 [TBL] [Abstract][Full Text] [Related]
13. Improved lysozyme stability and release properties of poly(lactide-co-glycolide) implants prepared by hot-melt extrusion. Ghalanbor Z; Körber M; Bodmeier R Pharm Res; 2010 Feb; 27(2):371-9. PubMed ID: 20033474 [TBL] [Abstract][Full Text] [Related]
14. Injectable Sustained-Release Depots of PLGA Microspheres for Insoluble Drugs Prepared by hot-Melt Extrusion. Guo Y; Yang Y; He L; Sun R; Pu C; Xie B; He H; Zhang Y; Yin T; Wang Y; Tang X Pharm Res; 2017 Oct; 34(10):2211-2222. PubMed ID: 28741064 [TBL] [Abstract][Full Text] [Related]
15. Preparation of sustained release microparticles with improved initial release property. Jung GY; Na YE; Park MS; Park CS; Myung PK Arch Pharm Res; 2009 Mar; 32(3):359-65. PubMed ID: 19387579 [TBL] [Abstract][Full Text] [Related]
16. Polymer degradation induced drug precipitation in PLGA implants - Why less is sometimes more. Zlomke C; Barth M; Mäder K Eur J Pharm Biopharm; 2019 Jun; 139():142-152. PubMed ID: 30902733 [TBL] [Abstract][Full Text] [Related]
17. Stability of proteins encapsulated in injectable and biodegradable poly(lactide-co-glycolide)-glucose millicylinders. Kang J; Lambert O; Ausborn M; Schwendeman SP Int J Pharm; 2008 Jun; 357(1-2):235-43. PubMed ID: 18384984 [TBL] [Abstract][Full Text] [Related]
18. Non-invasive in vivo characterization of microclimate pH inside in situ forming PLGA implants using multispectral fluorescence imaging. Schädlich A; Kempe S; Mäder K J Control Release; 2014 Apr; 179():52-62. PubMed ID: 24503251 [TBL] [Abstract][Full Text] [Related]
19. Preparation, characterization, and in vitro evaluation of physostigmine-loaded poly(ortho ester) and poly(ortho ester)/poly(D,L-lactide-co-glycolide) blend microspheres fabricated by spray drying. Wang L; Chaw CS; Yang YY; Moochhala SM; Zhao B; Ng S; Heller J Biomaterials; 2004 Jul; 25(16):3275-82. PubMed ID: 14980422 [TBL] [Abstract][Full Text] [Related]
20. Influence of formulation composition and process on the characteristics and in vitro release from PLGA-based sustained release injectables. Meeus J; Scurr DJ; Appeltans B; Amssoms K; Annaert P; Davies MC; Roberts CJ; Van den Mooter G Eur J Pharm Biopharm; 2015 Feb; 90():22-9. PubMed ID: 25448071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]