These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 29355706)

  • 21. Short-term resistance training with blood flow restriction enhances microvascular filtration capacity of human calf muscles.
    Evans C; Vance S; Brown M
    J Sports Sci; 2010 Jul; 28(9):999-1007. PubMed ID: 20544482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hemodynamic responses during lower-limb resistance exercise with blood flow restriction in healthy subjects.
    Poton R; Polito MD
    J Sports Med Phys Fitness; 2015 Dec; 55(12):1571-7. PubMed ID: 24998617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Can blood flow restriction augment muscle activation during high-load training?
    Dankel SJ; Buckner SL; Jessee MB; Mattocks KT; Mouser JG; Counts BR; Laurentino GC; Loenneke JP
    Clin Physiol Funct Imaging; 2018 Mar; 38(2):291-295. PubMed ID: 28093857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Closer to the edge? Contractions, pressures, waterfalls and blood flow to contracting skeletal muscle.
    Laughlin MH; Joyner M
    J Appl Physiol (1985); 2003 Jan; 94(1):3-5. PubMed ID: 12486017
    [No Abstract]   [Full Text] [Related]  

  • 25. Skeletal and cardiac muscle blood flow.
    Joyner MJ
    Exerc Sport Sci Rev; 2005 Jan; 33(1):1-2. PubMed ID: 15640713
    [No Abstract]   [Full Text] [Related]  

  • 26. Quantitative regional blood flow measurements in exercising leg skeletal muscle based on 99mTc-pertechnetate clearance.
    Peters AM
    Nucl Med Commun; 2009 Aug; 30(8):651-2. PubMed ID: 19584630
    [No Abstract]   [Full Text] [Related]  

  • 27. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction.
    Suga T; Okita K; Morita N; Yokota T; Hirabayashi K; Horiuchi M; Takada S; Takahashi T; Omokawa M; Kinugawa S; Tsutsui H
    J Appl Physiol (1985); 2009 Apr; 106(4):1119-24. PubMed ID: 19213931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feeding the sleeping giant: muscle blood flow during whole body exercise.
    Joyner MJ
    J Physiol; 2004 Jul; 558(Pt 1):1. PubMed ID: 15155795
    [No Abstract]   [Full Text] [Related]  

  • 29. The effects of vasodilators in pulmonary hypertension: pulmonary vascular or peripheral vascular?
    Rich S
    Circ Heart Fail; 2009 Mar; 2(2):145-50. PubMed ID: 19808330
    [No Abstract]   [Full Text] [Related]  

  • 30. Sex-specific influence of aging on exercising leg blood flow.
    Parker BA; Smithmyer SL; Pelberg JA; Mishkin AD; Proctor DN
    J Appl Physiol (1985); 2008 Mar; 104(3):655-64. PubMed ID: 18162481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lactate concentrations in human skeletal muscle biopsy, microdialysate and venous blood during dynamic exercise under blood flow restriction.
    Lundberg G; Olofsson P; Ungerstedt U; Jansson E; Sundberg CJ
    Pflugers Arch; 2002 Jan; 443(3):458-65. PubMed ID: 11810217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs.
    Joyner MJ; Casey DP
    Physiol Rev; 2015 Apr; 95(2):549-601. PubMed ID: 25834232
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Capillary endothelial cells as coordinators of skeletal muscle blood flow during active hyperemia.
    Murrant CL; Lamb IR; Novielli NM
    Microcirculation; 2017 Apr; 24(3):. PubMed ID: 28036147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unilateral bicep curl hemodynamics: Low-pressure continuous vs high-pressure intermittent blood flow restriction.
    Brandner CR; Kidgell DJ; Warmington SA
    Scand J Med Sci Sports; 2015 Dec; 25(6):770-7. PubMed ID: 25055880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hemodynamic Responses to Blood Flow Restriction and Resistance Exercise to Muscular Failure.
    Libardi CA; Catai AM; Miquelini M; Borghi-Silva A; Minatel V; Alvarez IF; Milan-Mattos JC; Roschel H; Tricoli V; Ugrinowitsch C
    Int J Sports Med; 2017 Feb; 38(2):134-140. PubMed ID: 27931053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blood flow restriction by low compressive force prevents disuse muscular weakness.
    Kubota A; Sakuraba K; Koh S; Ogura Y; Tamura Y
    J Sci Med Sport; 2011 Mar; 14(2):95-9. PubMed ID: 21035395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How NIR is the future in blood flow monitoring?
    Kuebler WM
    J Appl Physiol (1985); 2008 Apr; 104(4):905-6. PubMed ID: 18239080
    [No Abstract]   [Full Text] [Related]  

  • 38. A study of the blood flow restriction pressure of a tourniquet system to facilitate development of a system that can prevent musculoskeletal complications.
    Maeda H; Iwase H; Kanda A; Morohashi I; Kaneko K; Maeda M; Kakinuma Y; Takei Y; Amemiya S; Mitsui K
    Am J Disaster Med; 2017; 12(3):139-145. PubMed ID: 29270956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integration and Modulation of Intercellular Signaling Underlying Blood Flow Control.
    Segal SS
    J Vasc Res; 2015; 52(2):136-57. PubMed ID: 26368324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Point: The muscle pump raises muscle blood flow during locomotion.
    Sheriff D
    J Appl Physiol (1985); 2005 Jul; 99(1):371-2; discussion 374-5. PubMed ID: 16036908
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.