These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29356129)

  • 1. Large-Area Direct Laser-Shock Imprinting of a 3D Biomimic Hierarchical Metal Surface for Triboelectric Nanogenerators.
    Jin S; Wang Y; Motlag M; Gao S; Xu J; Nian Q; Wu W; Cheng GJ
    Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29356129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered and Laser-Processed Chitosan Biopolymers for Sustainable and Biodegradable Triboelectric Power Generation.
    Wang R; Gao S; Yang Z; Li Y; Chen W; Wu B; Wu W
    Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29349877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.
    Wang ZL
    ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of the Triboelectric Nanogenerator Using a Metal-to-Metal Imprinting Process for Improved Electrical Output.
    La M; Choi JH; Choi JY; Hwang TY; Kang J; Choi D
    Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy.
    Chen J; Yang J; Li Z; Fan X; Zi Y; Jing Q; Guo H; Wen Z; Pradel KC; Niu S; Wang ZL
    ACS Nano; 2015 Mar; 9(3):3324-31. PubMed ID: 25719956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the Performance of Fabric-Based Triboelectric Nanogenerators by Structural and Chemical Modification.
    Feng PY; Xia Z; Sun B; Jing X; Li H; Tao X; Mi HY; Liu Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16916-16927. PubMed ID: 33819011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capsule Triboelectric Nanogenerators: Toward Optional 3D Integration for High Output and Efficient Energy Harvesting from Broadband-Amplitude Vibrations.
    Wu C; Park JH; Koo B; Chen X; Wang ZL; Kim TW
    ACS Nano; 2018 Oct; 12(10):9947-9957. PubMed ID: 30272956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density.
    Zhao Z; Dai Y; Liu D; Zhou L; Li S; Wang ZL; Wang J
    Nat Commun; 2020 Dec; 11(1):6186. PubMed ID: 33273477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achieving ultrahigh triboelectric charge density for efficient energy harvesting.
    Wang J; Wu C; Dai Y; Zhao Z; Wang A; Zhang T; Wang ZL
    Nat Commun; 2017 Jul; 8(1):88. PubMed ID: 28729530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of patterned triboelectric output performance by an interfacial polymer layer for energy harvesting application.
    M M; Rajagopalan P; Xu S; Palani IA; Singh V; Wang X; Wu W
    Nanoscale; 2021 Dec; 13(48):20615-20624. PubMed ID: 34874984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Versatile surface for solid-solid/liquid-solid triboelectric nanogenerator based on fluorocarbon liquid infused surfaces.
    Chung J; Cho H; Yong H; Heo D; Rim YS; Lee S
    Sci Technol Adv Mater; 2020; 21(1):139-146. PubMed ID: 32194877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spherical Micro/Nano Hierarchical Structures for Energy and Water Harvesting Devices.
    Jung Y; Ahn J; Kim JS; Ha JH; Shim J; Cho H; Oh YS; Yoon YJ; Nam Y; Oh IK; Jeong JH; Park I
    Small Methods; 2022 Jul; 6(7):e2200248. PubMed ID: 35507776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible and Robust Triboelectric Nanogenerators with Chemically Prepared Metal Electrodes and a Plastic Contact Interface Based on Low-Cost Pressure-Sensitive Adhesive.
    Wang SC; Zhang B; Kang L; Liang C; Chen D; Liu G; Guo X
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Sustainable and Flexible Microbrush-Faced Triboelectric Generator for Portable/Wearable Applications.
    Jeong J; Jeon S; Ma X; Kwon YW; Shin DM; Hong SW
    Adv Mater; 2021 Oct; 33(39):e2102530. PubMed ID: 34355431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosted output performance of nanocellulose-based triboelectric nanogenerators via device engineering and surface functionalization.
    Vatankhah E; Tadayon M; Ramakrishna S
    Carbohydr Polym; 2021 Aug; 266():118120. PubMed ID: 34044936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Layer Triboelectric Nanogenerators Based on Ion-Doped Natural Nanofibrils.
    Ba YY; Bao JF; Deng HT; Wang ZY; Li XW; Gong T; Huang W; Zhang XS
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42859-42867. PubMed ID: 32856889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism.
    Wang S; Lin L; Xie Y; Jing Q; Niu S; Wang ZL
    Nano Lett; 2013 May; 13(5):2226-33. PubMed ID: 23581714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured versus flat compact electrode for triboelectric nanogenerators at high humidity.
    Karimi M; Seddighi S; Mohammadpour R
    Sci Rep; 2021 Aug; 11(1):16191. PubMed ID: 34376736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance-Enhanced Triboelectric Nanogenerator Based on the Double-Layered Electrode Effect.
    Jo S; Kim I; Jayababu N; Kim D
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly porous composite aerogel based triboelectric nanogenerators for high performance energy generation and versatile self-powered sensing.
    Mi HY; Jing X; Cai Z; Liu Y; Turng LS; Gong S
    Nanoscale; 2018 Dec; 10(48):23131-23140. PubMed ID: 30515502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.