These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29356131)

  • 1. Copper-Catalyzed Aziridination with Redox-Active Ligands: Molecular Spin Catalysis.
    Ren Y; Cheaib K; Jacquet J; Vezin H; Fensterbank L; Orio M; Blanchard S; Desage-El Murr M
    Chemistry; 2018 Apr; 24(20):5086-5090. PubMed ID: 29356131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing Group Transfer Catalysis by Copper Complex with Redox-Active Ligand in an Entatic State.
    Ren Y; Forté J; Cheaib K; Vanthuyne N; Fensterbank L; Vezin H; Orio M; Blanchard S; Desage-El Murr M
    iScience; 2020 Mar; 23(3):100955. PubMed ID: 32199288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low temperature syntheses and reactivity of Cu2O2 active-site models.
    Citek C; Herres-Pawlis S; Stack TD
    Acc Chem Res; 2015 Aug; 48(8):2424-33. PubMed ID: 26230113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.
    Chirik PJ
    Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-active ligands in catalysis.
    Praneeth VK; Ringenberg MR; Ward TR
    Angew Chem Int Ed Engl; 2012 Oct; 51(41):10228-34. PubMed ID: 22996755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper catalysis with redox-active ligands.
    Das A; Ren Y; Hessin C; Desage-El Murr M
    Beilstein J Org Chem; 2020; 16():858-870. PubMed ID: 32461767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimetallic redox synergy in oxidative palladium catalysis.
    Powers DC; Ritter T
    Acc Chem Res; 2012 Jun; 45(6):840-50. PubMed ID: 22029861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogenase cluster biosynthesis: organometallic chemistry nature's way.
    McGlynn SE; Mulder DW; Shepard EM; Broderick JB; Peters JW
    Dalton Trans; 2009 Jun; (22):4274-85. PubMed ID: 19662302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic asymmetric aziridination with borate catalysts derived from VANOL and VAPOL ligands: scope and mechanistic studies.
    Zhang Y; Desai A; Lu Z; Hu G; Ding Z; Wulff WD
    Chemistry; 2008; 14(12):3785-803. PubMed ID: 18306265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin State as a Marker for the Structural Evolution of Nature's Water-Splitting Catalyst.
    Krewald V; Retegan M; Neese F; Lubitz W; Pantazis DA; Cox N
    Inorg Chem; 2016 Jan; 55(2):488-501. PubMed ID: 26700960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aziridination of aliphatic alkenes catalyzed by N-heterocyclic carbene copper complexes.
    Xu Q; Appella DH
    Org Lett; 2008 Apr; 10(7):1497-500. PubMed ID: 18335951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological concepts for catalysis and reactivity: empowering bioinspiration.
    Das A; Hessin C; Ren Y; Desage-El Murr M
    Chem Soc Rev; 2020 Dec; 49(23):8840-8867. PubMed ID: 33107878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic metal-radical reactivity: aerial oxidation of alcohols, amines, aminophenols and catechols catalyzed by transition metal complexes.
    Chaudhuri P; Wieghardt K; Weyhermüller T; Paine TK; Mukherjee S; Mukherjee C
    Biol Chem; 2005 Oct; 386(10):1023-33. PubMed ID: 16218874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper-catalyzed alkene aziridination with N-tosyloxycarbamates.
    Lebel H; Lectard S; Parmentier M
    Org Lett; 2007 Nov; 9(23):4797-800. PubMed ID: 17944479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of the (bispidine)copper(II)-catalyzed aziridination of styrene: a combined experimental and theoretical study.
    Comba P; Lang C; Lopez de Laorden C; Muruganantham A; Rajaraman G; Wadepohl H; Zajaczkowski M
    Chemistry; 2008; 14(17):5313-28. PubMed ID: 18431732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot enantioselective aziridination of olefins catalyzed by a copper(I) complex of a novel diimine ligand by using PhI(OAc)(2) and sulfonamide as nitrene precursors.
    Wang X; Ding K
    Chemistry; 2006 Jun; 12(17):4568-75. PubMed ID: 16598800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.
    Ward TR
    Acc Chem Res; 2011 Jan; 44(1):47-57. PubMed ID: 20949947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new chiral, poly-imidazole N8-ligand and the related di- and tri-copper(II) complexes: synthesis, theoretical modelling, spectroscopic properties, and biomimetic stereoselective oxidations.
    Mutti FG; Gullotti M; Casella L; Santagostini L; Pagliarin R; Andersson KK; Iozzi MF; Zoppellaro G
    Dalton Trans; 2011 May; 40(20):5436-57. PubMed ID: 21298193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel example of chiral counteranion induced enantioselective metal catalysis: the importance of ion-pairing in copper-catalyzed olefin aziridination and cyclopropanation.
    Llewellyn DB; Adamson D; Arndtsen BA
    Org Lett; 2000 Dec; 2(26):4165-8. PubMed ID: 11150190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.