These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 29356220)
1. Comparison of false-negative rates and limits of detection following macrofoam-swab sampling of Bacillus anthracis surrogates via Rapid Viability PCR and plate culture. Hutchison JR; Piepel GF; Amidan BG; Hess BM; Sydor MA; Deatherage Kaiser BL J Appl Microbiol; 2018 May; 124(5):1092-1106. PubMed ID: 29356220 [TBL] [Abstract][Full Text] [Related]
2. False-negative rate, limit of detection and recovery efficiency performance of a validated macrofoam-swab sampling method for low surface concentrations of Bacillus anthracis Sterne and Bacillus atrophaeus spores. Piepel GF; Deatherage Kaiser BL; Amidan BG; Sydor MA; Barrett CA; Hutchison JR J Appl Microbiol; 2016 Jul; 121(1):149-62. PubMed ID: 26972788 [TBL] [Abstract][Full Text] [Related]
3. Most-probable-number rapid viability PCR method to detect viable spores of Bacillus anthracis in swab samples. Létant SE; Kane SR; Murphy GA; Alfaro TM; Hodges LR; Rose LJ; Raber E J Microbiol Methods; 2010 May; 81(2):200-2. PubMed ID: 20193716 [TBL] [Abstract][Full Text] [Related]
4. National validation study of a swab protocol for the recovery of Bacillus anthracis spores from surfaces. Hodges LR; Rose LJ; O'Connell H; Arduino MJ J Microbiol Methods; 2010 May; 81(2):141-6. PubMed ID: 20193714 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of a macrofoam swab protocol for the recovery of Bacillus anthracis spores from a steel surface. Hodges LR; Rose LJ; Peterson A; Noble-Wang J; Arduino MJ Appl Environ Microbiol; 2006 Jun; 72(6):4429-30. PubMed ID: 16751562 [TBL] [Abstract][Full Text] [Related]
6. Rapid, high-throughput, culture-based PCR methods to analyze samples for viable spores of Bacillus anthracis and its surrogates. Kane SR; Létant SE; Murphy GA; Alfaro TM; Krauter PW; Mahnke R; Legler TC; Raber E J Microbiol Methods; 2009 Mar; 76(3):278-84. PubMed ID: 19141303 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of a modified rapid viability-polymerase chain reaction method for Bacillus atrophaeus spores in water matrices. Bushon RN; Brady AMG; Kephart CM; Gallardo V J Microbiol Methods; 2021 Sep; 188():106293. PubMed ID: 34324928 [TBL] [Abstract][Full Text] [Related]
8. False-negative rate and recovery efficiency performance of a validated sponge wipe sampling method. Krauter PA; Piepel GF; Boucher R; Tezak M; Amidan BG; Einfeld W Appl Environ Microbiol; 2012 Feb; 78(3):846-54. PubMed ID: 22138998 [TBL] [Abstract][Full Text] [Related]
9. Use of a foam spatula for sampling surfaces after bioaerosol deposition. Lewandowski R; Kozlowska K; Szpakowska M; Stepinska M; Trafny EA Appl Environ Microbiol; 2010 Feb; 76(3):688-94. PubMed ID: 20023101 [TBL] [Abstract][Full Text] [Related]
10. Detection of low numbers of Bacillus anthracis spores in three soils using five commercial DNA extraction methods with and without an enrichment step. Gulledge JS; Luna VA; Luna AJ; Zartman R; Cannons AC J Appl Microbiol; 2010 Nov; 109(5):1509-20. PubMed ID: 20553343 [TBL] [Abstract][Full Text] [Related]
11. Use of onsite technologies for rapidly assessing environmental Bacillus anthracis contamination on surfaces in buildings. Centers for Disease Control and Prevention (CDC) MMWR Morb Mortal Wkly Rep; 2001 Dec; 50(48):1087. PubMed ID: 11770505 [TBL] [Abstract][Full Text] [Related]
12. Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations. Hess BM; Amidan BG; Anderson KK; Hutchison JR PLoS One; 2016; 11(10):e0164582. PubMed ID: 27736999 [TBL] [Abstract][Full Text] [Related]
13. Development of quantitative real-time PCR assays for detection and quantification of surrogate biological warfare agents in building debris and leachate. Saikaly PE; Barlaz MA; de Los Reyes FL Appl Environ Microbiol; 2007 Oct; 73(20):6557-65. PubMed ID: 17720820 [TBL] [Abstract][Full Text] [Related]
15. A simple method for the rapid removal of Bacillus anthracis spores from DNA preparations. Dauphin LA; Bowen MD J Microbiol Methods; 2009 Feb; 76(2):212-4. PubMed ID: 18996156 [TBL] [Abstract][Full Text] [Related]
16. Reagent-free and portable detection of Bacillus anthracis spores using a microfluidic incubator and smartphone microscope. Hutchison JR; Erikson RL; Sheen AM; Ozanich RM; Kelly RT Analyst; 2015 Sep; 140(18):6269-76. PubMed ID: 26266749 [TBL] [Abstract][Full Text] [Related]
17. Development and validation of a real-time quantitative PCR assay for rapid identification of Bacillus anthracis in environmental samples. Irenge LM; Durant JF; Tomaso H; Pilo P; Olsen JS; Ramisse V; Mahillon J; Gala JL Appl Microbiol Biotechnol; 2010 Nov; 88(5):1179-92. PubMed ID: 20827474 [TBL] [Abstract][Full Text] [Related]
18. Rapid and effective detection of anthrax spores in soil by PCR. Cheun HI; Makino SI; Watarai M; Erdenebaatar J; Kawamoto K; Uchida I J Appl Microbiol; 2003; 95(4):728-33. PubMed ID: 12969286 [TBL] [Abstract][Full Text] [Related]
19. Development of a rapid and sensitive immunoassay for detection and subsequent recovery of Bacillus anthracis spores in environmental samples. Hang J; Sundaram AK; Zhu P; Shelton DR; Karns JS; Martin PA; Li S; Amstutz P; Tang CM J Microbiol Methods; 2008 Jun; 73(3):242-6. PubMed ID: 18395279 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the Biological Sampling Kit (BiSKit) for large-area surface sampling. Buttner MP; Cruz P; Stetzenbach LD; Klima-Comba AK; Stevens VL; Emanuel PA Appl Environ Microbiol; 2004 Dec; 70(12):7040-5. PubMed ID: 15574898 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]