These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29356337)

  • 1. Self-organized Ruthenium-Barium Core-Shell Nanoparticles on a Mesoporous Calcium Amide Matrix for Efficient Low-Temperature Ammonia Synthesis.
    Kitano M; Inoue Y; Sasase M; Kishida K; Kobayashi Y; Nishiyama K; Tada T; Kawamura S; Yokoyama T; Hara M; Hosono H
    Angew Chem Int Ed Engl; 2018 Mar; 57(10):2648-2652. PubMed ID: 29356337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large Oblate Hemispheroidal Ruthenium Particles Supported on Calcium Amide as Efficient Catalysts for Ammonia Decomposition.
    Kishida K; Kitano M; Inoue Y; Sasase M; Nakao T; Tada T; Abe H; Niwa Y; Yokoyama T; Hara M; Hosono H
    Chemistry; 2018 Jun; 24(31):7976-7984. PubMed ID: 29603479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition and Alkali Metal Complex Ternary Amides for Ammonia Synthesis and Decomposition.
    Cao H; Guo J; Chang F; Pistidda C; Zhou W; Zhang X; Santoru A; Wu H; Schell N; Niewa R; Chen P; Klassen T; Dornheim M
    Chemistry; 2017 Jul; 23(41):9766-9771. PubMed ID: 28627715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of nitrogen co-doping with ruthenium on the catalytic performance of Ba/Ru-N-MC catalysts for ammonia synthesis.
    Ma Y; Lan G; Wang X; Zhang G; Han W; Tang H; Liu H; Li Y
    RSC Adv; 2019 Jul; 9(38):22045-22052. PubMed ID: 35518881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co nanoparticles supported on mixed magnesium-lanthanum oxides: effect of calcium and barium addition on ammonia synthesis catalyst performance.
    Ronduda H; Zybert M; Patkowski W; Moszyński D; Albrecht A; Sobczak K; Małolepszy A; Raróg-Pilecka W
    RSC Adv; 2023 Jan; 13(7):4787-4802. PubMed ID: 36760280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic Properties of Ammonia Production from Hydrogenation of Alkali and Alkaline Earth Metal Amides.
    Wang QR; Guan YQ; Gao WB; Guo JP; Chen P
    Chemphyschem; 2019 May; 20(10):1376-1381. PubMed ID: 30701657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co Nanoparticle Catalysts Encapsulated by BaO-La
    Miyahara SI; Sato K; Tsujimaru K; Wada Y; Ogura Y; Toriyama T; Yamamoto T; Matsumura S; Inazu K; Nagaoka K
    ACS Omega; 2022 Jul; 7(28):24452-24460. PubMed ID: 35874216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compositional effects in Ru, Pd, Pt, and Rh-doped mesoporous tantalum oxide catalysts for ammonia synthesis.
    Yue C; Qiu L; Trudeau M; Antonelli D
    Inorg Chem; 2007 Jun; 46(12):5084-92. PubMed ID: 17497850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ultrasonic power on the structure of activated carbon and the activities of Ru/AC catalyst.
    Yu F; Ji J; Xu Z; Liu H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e389-92. PubMed ID: 16782146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ facile synthesis of Ru-based core-shell nanoparticles supported on carbon black and their high catalytic activity in the dehydrogenation of amine-boranes.
    Cao N; Su J; Hong X; Luo W; Cheng G
    Chem Asian J; 2014 Feb; 9(2):562-71. PubMed ID: 24288206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heteroepitaxial Growth of B
    Kang S; Cha J; Jo YS; Lee YJ; Sohn H; Kim Y; Song CK; Kim Y; Lim DH; Park J; Yoon CW
    Adv Mater; 2023 Jan; 35(4):e2203364. PubMed ID: 35853218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal Synthesis of Ruthenium Nanoparticles with a Metallic Core and a Ruthenium Carbide Shell for Low-Temperature Activation of CO
    Cored J; García-Ortiz A; Iborra S; Climent MJ; Liu L; Chuang CH; Chan TS; Escudero C; Concepción P; Corma A
    J Am Chem Soc; 2019 Dec; 141(49):19304-19311. PubMed ID: 31774282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.
    Muratsugu S; Kityakarn S; Wang F; Ishiguro N; Kamachi T; Yoshizawa K; Sekizawa O; Uruga T; Tada M
    Phys Chem Chem Phys; 2015 Oct; 17(38):24791-802. PubMed ID: 26344789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Temperature Synthesis of Perovskite Oxynitride-Hydrides as Ammonia Synthesis Catalysts.
    Kitano M; Kujirai J; Ogasawara K; Matsuishi S; Tada T; Abe H; Niwa Y; Hosono H
    J Am Chem Soc; 2019 Dec; 141(51):20344-20353. PubMed ID: 31755269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ceria-supported ruthenium nanoparticles as highly active and long-lived catalysts in hydrogen generation from the hydrolysis of ammonia borane.
    Akbayrak S; Tonbul Y; Özkar S
    Dalton Trans; 2016 Jul; 45(27):10969-78. PubMed ID: 27302302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Effective Ru/BaCeO
    Li W; Wang S; Li J
    Chem Asian J; 2019 Aug; 14(16):2815-2821. PubMed ID: 31187596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-temperature-stable and regenerable catalysts: platinum nanoparticles in aligned mesoporous silica wells.
    Xiao C; Maligal-Ganesh RV; Li T; Qi Z; Guo Z; Brashler KT; Goes S; Li X; Goh TW; Winans RE; Huang W
    ChemSusChem; 2013 Oct; 6(10):1915-22. PubMed ID: 24039118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ordered bilayer ruthenium-platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts.
    Hsieh YC; Zhang Y; Su D; Volkov V; Si R; Wu L; Zhu Y; An W; Liu P; He P; Ye S; Adzic RR; Wang JX
    Nat Commun; 2013; 4():2466. PubMed ID: 24045405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New route toward building active ruthenium nanoparticles on ordered mesoporous carbons with extremely high stability.
    Yang Y; Sun C; Ren Y; Hao S; Jiang D
    Sci Rep; 2014 Apr; 4():4540. PubMed ID: 24687047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor.
    Yang M; Sun Y; Xu AH; Lu XY; Du HZ; Sun CL; Li C
    Bull Environ Contam Toxicol; 2007 Jul; 79(1):66-70. PubMed ID: 17593307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.