BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 2935639)

  • 1. Evaluation of the inhibition of glycolytic enzymes by the neurotoxicant dimethylaminopropionitrile.
    Froines JR; Watson AJ
    J Toxicol Environ Health; 1985; 16(3-4):469-79. PubMed ID: 2935639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The etiology of toxic peripheral neuropathies: in vitro effects of acrylamide and 2,5-hexanedione on brain enolase and other glycolytic enzymes.
    Howland RD; Vyas IL; Lowndes HE; Argentieri TM
    Brain Res; 1980 Nov; 202(1):131-42. PubMed ID: 6448665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of monoamine oxidase in aminopropionitrile-induced neurotoxicity.
    Wilmarth KR; Froines JR
    J Toxicol Environ Health; 1991 Apr; 32(4):415-27. PubMed ID: 2016753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo and in vitro release of cyanide from neurotoxic aminonitriles.
    Froines JR; Postlethwait EM; LaFuente EJ; Liu WC
    J Toxicol Environ Health; 1985; 16(3-4):449-60. PubMed ID: 4087311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Experiments on the inhibition of glycolytic enzymes by diisopropylfluroophosphate].
    Domagk GF; Sörensen N; Zech R
    Hoppe Seylers Z Physiol Chem; 1967 Apr; 348(4):381-4. PubMed ID: 4231654
    [No Abstract]   [Full Text] [Related]  

  • 6. [Inhibition of glycolytic enzymes by sesquiterpene lactones in phytohemagglutinin-stimulated lymphocytes].
    Baer-Dubowska W; Gnojkowski J; Chmiel J
    Folia Med Cracov; 1980; 22(3-4):393-402. PubMed ID: 6456974
    [No Abstract]   [Full Text] [Related]  

  • 7. The effect of the sesquiterpene lactones from Geigeria on glycolytic enzymes.
    Gaspar AR; Potgieter DJ; Vermeulen NM
    Biochem Pharmacol; 1986 Feb; 35(3):493-7. PubMed ID: 2936349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Protein structure and enzyme activity. 3. Suppressibility by pyridoxal-5-phosphate of glucose-6-phosphate dehydrogenase and other enzymes of carbohydrate metabolism].
    Domschke W; Domagk GF
    Hoppe Seylers Z Physiol Chem; 1969 Sep; 350(9):1111-6. PubMed ID: 4242507
    [No Abstract]   [Full Text] [Related]  

  • 9. Lack of inhibition of glycolytic enzymes by the neurotoxic organophosphorus compounds mipafox and methamidofos.
    Hernández AF; Pla A; Villanueva E
    Arch Toxicol; 1988; 61(4):330-1. PubMed ID: 2967683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glyceraldehyde-3-phosphate dehydrogenase inactivation by peroxynitrite.
    Souza JM; Radi R
    Arch Biochem Biophys; 1998 Dec; 360(2):187-94. PubMed ID: 9851830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition kinetics of catabolic dehydrogenases by elevated moieties of ATP and ADP--implication for a new regulation mechanism in Lactococcus lactis.
    Cao R; Zeidan AA; Rådström P; van Niel EW
    FEBS J; 2010 Apr; 277(8):1843-52. PubMed ID: 20193044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of the molecular pathogenesis of hexane neuropathy. I. evaluation of the inhibition of glyceraldehyde-3-phosphate dehydrogenase by 2,5-hexanedione.
    Graham DG; Abou-Donia MB
    J Toxicol Environ Health; 1980 May; 6(3):621-31. PubMed ID: 7420469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of erythrocyte membranes and tubulin on the activity of NAD-dependent dehydrogenases].
    Shcherbatova NA; Nagradova NK; Muronets VI
    Biokhimiia; 1996 Aug; 61(8):1512-25. PubMed ID: 8962925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase works as an arsenate reductase in human red blood cells and rat liver cytosol.
    Gregus Z; Németi B
    Toxicol Sci; 2005 Jun; 85(2):859-69. PubMed ID: 15788719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exogenous nitric oxide (NO) generation or IL-1 beta-induced intracellular NO production stimulates inhibitory auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase in RINm5F cells.
    Dimmeler S; Ankarcrona M; Nicotera P; Brüne B
    J Immunol; 1993 Apr; 150(7):2964-71. PubMed ID: 8454867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The association of glycolytic enzymes from yeast confers resistance against inhibition by trehalose.
    Araiza-Olivera D; Sampedro JG; Mújica A; Peña A; Uribe-Carvajal S
    FEMS Yeast Res; 2010 May; 10(3):282-9. PubMed ID: 20148975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the mechanism of urotoxic effects of N,N'-dimethylaminopropionitrile in rats and mice. 1. Biochemical and morphologic characterization of the injury and its relationship to metabolism.
    Mumtaz MM; Farooqui MY; Ghanayem BI; Rajaraman S; Frankenberg L; Ahmed AE
    J Toxicol Environ Health; 1991 May; 33(1):1-17. PubMed ID: 2033640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anacardic acid derivatives as inhibitors of glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi.
    Pereira JM; Severino RP; Vieira PC; Fernandes JB; da Silva MF; Zottis A; Andricopulo AD; Oliva G; Corrêa AG
    Bioorg Med Chem; 2008 Oct; 16(19):8889-95. PubMed ID: 18789702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase decreases the enzyme affinity to the erythrocyte membrane.
    Galli F; Rovidati S; Ghibelli L; Canestrari F
    Nitric Oxide; 1998; 2(1):17-27. PubMed ID: 9706739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double inhibition of D-glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase.
    Lien LV; Ecsedi G; Keleti T
    Acta Biochim Biophys Acad Sci Hung; 1979; 14(1-2):11-7. PubMed ID: 517106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.