These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 29356412)
21. Dynamic self-assembly of compartmentalized DNA nanotubes. Agarwal S; Klocke MA; Pungchai PE; Franco E Nat Commun; 2021 Jun; 12(1):3557. PubMed ID: 34117248 [TBL] [Abstract][Full Text] [Related]
22. Self-assembly of metal-DNA triangles and DNA nanotubes with synthetic junctions. Yang H; Lo PK; McLaughlin CK; Hamblin GD; Aldaye FA; Sleiman HF Methods Mol Biol; 2011; 749():33-47. PubMed ID: 21674363 [TBL] [Abstract][Full Text] [Related]
23. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221 [TBL] [Abstract][Full Text] [Related]
24. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications. Hu J; Liu S Acc Chem Res; 2014 Jul; 47(7):2084-95. PubMed ID: 24742049 [TBL] [Abstract][Full Text] [Related]
25. Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Shimizu T; Ding W; Kameta N Chem Rev; 2020 Feb; 120(4):2347-2407. PubMed ID: 32013405 [TBL] [Abstract][Full Text] [Related]
26. Self-Assembly of Hierarchical DNA Nanotube Architectures with Well-Defined Geometries. Jorgenson TD; Mohammed AM; Agrawal DK; Schulman R ACS Nano; 2017 Feb; 11(2):1927-1936. PubMed ID: 28085250 [TBL] [Abstract][Full Text] [Related]
27. Design and characterization of programmable DNA nanotubes. Rothemund PW; Ekani-Nkodo A; Papadakis N; Kumar A; Fygenson DK; Winfree E J Am Chem Soc; 2004 Dec; 126(50):16344-52. PubMed ID: 15600335 [TBL] [Abstract][Full Text] [Related]
28. Template synthesized nanotubes for biomedical delivery applications. Hillebrenner H; Buyukserin F; Stewart JD; Martin CR Nanomedicine (Lond); 2006 Jun; 1(1):39-50. PubMed ID: 17716208 [TBL] [Abstract][Full Text] [Related]
29. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Oh SH; Finõnes RR; Daraio C; Chen LH; Jin S Biomaterials; 2005 Aug; 26(24):4938-43. PubMed ID: 15769528 [TBL] [Abstract][Full Text] [Related]
30. Strategy for the assembly of carbon nanotube-metal nanoparticle hybrids using biointerfaces. Kim SN; Slocik JM; Naik RR Small; 2010 Sep; 6(18):1992-5. PubMed ID: 20721951 [No Abstract] [Full Text] [Related]
31. In Situ Eco Encapsulation of Bioactive Agrochemicals within Fully Organic Nanotubes. Mejías FJR; Trasobares S; López-Haro M; Varela RM; Molinillo JMG; Calvino JJ; Macías FA ACS Appl Mater Interfaces; 2019 Nov; 11(45):41925-41934. PubMed ID: 31633337 [TBL] [Abstract][Full Text] [Related]
32. A Reconfigurable DNA Accordion Rack. Choi Y; Choi H; Lee AC; Lee H; Kwon S Angew Chem Int Ed Engl; 2018 Mar; 57(11):2811-2815. PubMed ID: 29368437 [TBL] [Abstract][Full Text] [Related]
33. DNA Nanostructures as Smart Drug-Delivery Vehicles and Molecular Devices. Linko V; Ora A; Kostiainen MA Trends Biotechnol; 2015 Oct; 33(10):586-594. PubMed ID: 26409777 [TBL] [Abstract][Full Text] [Related]
34. Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Li LJ; Khlobystov AN; Wiltshire JG; Briggs GA; Nicholas RJ Nat Mater; 2005 Jun; 4(6):481-5. PubMed ID: 15908958 [TBL] [Abstract][Full Text] [Related]
35. Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability. Hamblin GD; Carneiro KM; Fakhoury JF; Bujold KE; Sleiman HF J Am Chem Soc; 2012 Feb; 134(6):2888-91. PubMed ID: 22283197 [TBL] [Abstract][Full Text] [Related]
36. Spectroscopic probing of organic molecules encapsulated in functionalized carbon nanotubes in solution. Fu K; Martin RB; Rao AM; Sun YP J Nanosci Nanotechnol; 2003; 3(1-2):127-31. PubMed ID: 12908240 [TBL] [Abstract][Full Text] [Related]
37. Biomolecule-directed assembly of self-supported, nanoporous, conductive, and luminescent single-walled carbon nanotube scaffolds. Ostojic GN; Hersam MC Small; 2012 Jun; 8(12):1840-5. PubMed ID: 22461319 [TBL] [Abstract][Full Text] [Related]
38. DNA nanostructures interacting with lipid bilayer membranes. Langecker M; Arnaut V; List J; Simmel FC Acc Chem Res; 2014 Jun; 47(6):1807-15. PubMed ID: 24828105 [TBL] [Abstract][Full Text] [Related]
40. Formation of DNA nanotubes increases uptake into fibroblasts via enhanced affinity for collagen. Ito K; Maeda K; Kariya M; Yasui K; Araki A; Takahashi Y; Takakura Y Int J Pharm; 2023 Sep; 644():123297. PubMed ID: 37574114 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]