These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 29357163)

  • 1. Experimental Analysis of the Grazing Interaction Between a Mayfly and Stream Algae.
    Hill WR; Knight AW
    Ecology; 1987 Dec; 68(6):1955-1965. PubMed ID: 29357163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of stream algae to grazing minnows and nutrients: a field test for interactions.
    Stewart AJ
    Oecologia; 1987 Apr; 72(1):1-7. PubMed ID: 28312888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do grazers affect periphyton heterogeneity in streams?
    Alvarez M; Peckarsky BL
    Oecologia; 2005 Feb; 142(4):576-87. PubMed ID: 15688216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grazer traits, competition, and carbon sources to a headwater-stream food web.
    McNeely C; Finlay JC; Power ME
    Ecology; 2007 Feb; 88(2):391-401. PubMed ID: 17479757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does an increase in irradiance influence periphyton in a heavily-grazed woodland stream?
    Steinman AD
    Oecologia; 1992 Aug; 91(2):163-170. PubMed ID: 28313452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Herbivorous caddisflies, macroalgae, and epilithic microalgae: dynamic interactions in a stream grazing system.
    Feminella JW; Resh VH
    Oecologia; 1991 Jul; 87(2):247-256. PubMed ID: 28313842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Herbivory and intraspecific competition in a stream caddisfly population.
    Lamberti GA; Feminella JW; Resh VH
    Oecologia; 1987 Aug; 73(1):75-81. PubMed ID: 28311408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of algal patch depletion: importance of consumptive and non-consumptive losses in mayfly-diatom systems.
    Scrimgeour GJ; Culp JM; Bothwell ML; Wrona FJ; McKee MH
    Oecologia; 1991 Jan; 85(3):343-348. PubMed ID: 28312038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of omnivorous shrimp in a montane tropical stream: sediment removal, disturbance of sessile invertebrates and enhancement of understory algal biomass.
    Pringle CM; Blake GA; Covich AP; Buzby KM; Finley A
    Oecologia; 1993 Feb; 93(1):1-11. PubMed ID: 28313766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and temporal variability of river periphyton below a hypereutrophic lake and a series of dams.
    Gillett ND; Pan Y; Eli Asarian J; Kann J
    Sci Total Environ; 2016 Jan; 541():1382-1392. PubMed ID: 26479912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grazer control of nutrient availability in the periphyton.
    McCormick PV; Stevenson RJ
    Oecologia; 1991 Apr; 86(2):287-291. PubMed ID: 28313212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. META-ANALYSIS OF GRAZER CONTROL OF PERIPHYTON BIOMASS ACROSS AQUATIC ECOSYSTEMS(1).
    Hillebrand H
    J Phycol; 2009 Aug; 45(4):798-806. PubMed ID: 27034208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of sediment deposition on periphytic biomass, photosynthetic activity and algal community structure.
    Izagirre O; Serra A; Guasch H; Elosegi A
    Sci Total Environ; 2009 Oct; 407(21):5694-700. PubMed ID: 19666189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of light and nutrients on periphyton and the fatty acid composition and somatic growth of invertebrate grazers in subtropical streams.
    Guo F; Kainz MJ; Sheldon F; Bunn SE
    Oecologia; 2016 Jun; 181(2):449-62. PubMed ID: 26883960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between fish, grazing invertebrates and algae in a New Zealand stream: a trophic cascade mediated by fish-induced changes to grazer behaviour?
    McIntosh AR; Townsend CR
    Oecologia; 1996 Oct; 108(1):174-181. PubMed ID: 28307748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benthic grazing in a eutrophic river: cascading effects of zoobenthivorous fish mask direct effects of herbivorous fish.
    Gerke M; Cob Chaves D; Richter M; Mewes D; Schneider J; Hübner D; Winkelmann C
    PeerJ; 2018; 6():e4381. PubMed ID: 29473006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redundancy among three herbivorous insects across an experimental current velocity gradient.
    Poff NL; Wellnitz T; Monroe JB
    Oecologia; 2003 Jan; 134(2):262-9. PubMed ID: 12647167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of algae in the diet of the oligochaetes Lumbriculus variegatus (MÜller) and Rhyacodrilus sodalis (Eisen).
    Moore JW
    Oecologia; 1978 Jan; 35(3):357-363. PubMed ID: 28310279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sediment toxicity and community composition of benthos and colonized periphyton in the Everglades-Florida Bay transitional zone.
    Lewis MA; Goodman LR; Macauley JM; Moore JC
    Ecotoxicology; 2004 Apr; 13(3):231-44. PubMed ID: 15217247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical analysis of the removal rate of periphyton by grazers.
    Cattaneo A; Mousseau B
    Oecologia; 1995 Aug; 103(2):249-254. PubMed ID: 28306780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.