These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29357166)

  • 21. Loss of trophic complexity in saline prairie lakes as indicated by stable-isotope based community-metrics.
    Cooper RN; Wissel B
    Aquat Biosyst; 2012 Mar; 8(1):6. PubMed ID: 22480379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Food web de-synchronization in England's largest lake: an assessment based on multiple phenological metrics.
    Thackeray SJ; Henrys PA; Feuchtmayr H; Jones ID; Maberly SC; Winfield IJ
    Glob Chang Biol; 2013 Dec; 19(12):3568-80. PubMed ID: 23868351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The ecology of Lake Nakuru : VI. Synopsis of production and energy flow.
    Vareschi E; Jacobs J
    Oecologia; 1985 Feb; 65(3):412-424. PubMed ID: 28310447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in ecosystem resilience detected in automated measures of ecosystem metabolism during a whole-lake manipulation.
    Batt RD; Carpenter SR; Cole JJ; Pace ML; Johnson RA
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17398-403. PubMed ID: 24101479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of the blue-green alga Microcystis aeruginosa on zooplankton competitive relations.
    Fulton RS; Paerl HW
    Oecologia; 1988 Aug; 76(3):383-389. PubMed ID: 28312018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effect of abiotic and biotic factors on the structural and functional organization of the saline lake ecosystems in Crimea].
    Balushkina EV; Golubkov SM; Golubkov MS; Litvinchuk LF; Shadrin NV
    Zh Obshch Biol; 2009; 70(6):504-14. PubMed ID: 20063772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Macrophyte refuges, prey behaviour and trophic interactions: consequences for lake water clarity.
    Genkai-Kato M
    Ecol Lett; 2007 Feb; 10(2):105-14. PubMed ID: 17257098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impacts of elevated terrestrial nutrient loads and temperature on pelagic food-web efficiency and fish production.
    Lefébure R; Degerman R; Andersson A; Larsson S; Eriksson LO; Båmstedt U; Byström P
    Glob Chang Biol; 2013 May; 19(5):1358-72. PubMed ID: 23505052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Response of plankton to nutrients, planktivory and terrestrial organic matter: a model analysis of whole-lake experiments.
    Carpenter SR; Cole JJ; Pace ML; Wilkinson GM
    Ecol Lett; 2016 Mar; 19(3):230-9. PubMed ID: 26689608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of drought and pluvial periods on fish and zooplankton communities in prairie lakes: systematic and asystematic responses.
    Starks E; Cooper R; Leavitt PR; Wissel B
    Glob Chang Biol; 2014 Apr; 20(4):1032-42. PubMed ID: 23960001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contrasting effects of a cladoceran (Daphnia galeata) and a calanoid copepod (Eodiaptomus japonicus) on algal and microbial plankton in a Japanese lake, Lake Biwa.
    Yoshida T; Gurung T; Kagami M; Urabe J
    Oecologia; 2001 Dec; 129(4):602-610. PubMed ID: 24577701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diel changes in vertical and horizontal distribution of cladocerans in two deep lakes during early and late summer.
    Antón-Pardo M; Muška M; Jůza T; Vejříková I; Vejřík L; Blabolil P; Čech M; Draštík V; Frouzová J; Holubová M; Říha M; Sajdlová Z; Šmejkal M; Peterka J
    Sci Total Environ; 2021 Jan; 751():141601. PubMed ID: 32871313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monthly changes in the abundance and biomass of zooplankton and water quality parameters in Kukkarahalli Lake of Mysore, India.
    Joseph B; Yamakanamardi SM
    J Environ Biol; 2011 Sep; 32(5):551-7. PubMed ID: 22319868
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Do grazers respond to or control food quality? Cross-scale analysis of algivorous fish in littoral Lake Tanganyika.
    Munubi RN; McIntyre PB; Vadeboncoeur Y
    Oecologia; 2018 Nov; 188(3):889-900. PubMed ID: 30099606
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An experimental comparison of the effects of two chemical stressors on a freshwater zooplankton assemblage.
    Havens KE
    Environ Pollut; 1994; 84(3):245-51. PubMed ID: 15091695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size-dependent foraging efficiency, cannibalism and zooplankton community structure.
    Wahlström E; Persson L; Diehl S; Byström P
    Oecologia; 2000 Apr; 123(1):138-148. PubMed ID: 28308739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mercury biomagnification in three geothermally-influenced lakes differing in chemistry and algal biomass.
    Verburg P; Hickey CW; Phillips N
    Sci Total Environ; 2014 Sep; 493():342-54. PubMed ID: 24951892
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glacier melting and stoichiometric implications for lake community structure: zooplankton species distributions across a natural light gradient.
    Laspoumaderes C; Modenutti B; Souza MS; Bastidas Navarro M; Cuassolo F; Balseiro E
    Glob Chang Biol; 2013 Jan; 19(1):316-26. PubMed ID: 23504742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The microbial loop in the planktonic communities in lakes with various trophic status].
    Kopylov AI; Kosolapov DB; Romanenko AV; Krylov AV; Korneva LG; Gusev ES
    Zh Obshch Biol; 2007; 68(5):350-60. PubMed ID: 18038648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of water-column mixing on bacteria, phytoplankton, and rotifers under different levels of herbivory in a shallow eutrophic lake.
    Weithoff G; Lorke A; Walz N
    Oecologia; 2000 Oct; 125(1):91-100. PubMed ID: 28308227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.