These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29357254)

  • 41. The impact of tilt grain boundaries on the thermal transport in perovskite SrTiO
    Yeandel SR; Molinari M; Parker SC
    Nanoscale; 2018 Aug; 10(31):15010-15022. PubMed ID: 30052247
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Probing dopant segregation in distinct cation sites at perovskite oxide polycrystal interfaces.
    Yoon HI; Lee DK; Bae HB; Jo GY; Chung HS; Kim JG; Kang SL; Chung SY
    Nat Commun; 2017 Nov; 8(1):1417. PubMed ID: 29127289
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermal transport in monocrystalline and polycrystalline lithium cobalt oxide.
    He J; Zhang L; Liu L
    Phys Chem Chem Phys; 2019 Jun; 21(23):12192-12200. PubMed ID: 31149685
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Solid electrolytes for fluoride ion batteries: ionic conductivity in polycrystalline tysonite-type fluorides.
    Rongeat C; Reddy MA; Witter R; Fichtner M
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):2103-10. PubMed ID: 24444763
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Conductive Nature of Grain Boundaries in Nanocrystalline Stabilized Bi
    Jeong SJ; Kwak NW; Byeon P; Chung SY; Jung W
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6269-6275. PubMed ID: 29369610
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Anomalous low-temperature proton conductivity enhancement in a novel protonic nanocomposite.
    Clark D; Tong J; Morrissey A; Almansoori A; Reimanis I; O'Hayre R
    Phys Chem Chem Phys; 2014 Mar; 16(11):5076-80. PubMed ID: 24500514
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Insights into the Proton Transport Mechanism in TiO
    Gao J; Meng Y; Benton A; He J; Jacobsohn LG; Tong J; Brinkman KS
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38012-38018. PubMed ID: 32846475
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Grain Boundaries as Electrical Conduction Channels in Polycrystalline Monolayer WS
    Zhou Y; Sarwat SG; Jung GS; Buehler MJ; Bhaskaran H; Warner JH
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10189-10197. PubMed ID: 30817114
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage.
    Thangadurai V; Pinzaru D; Narayanan S; Baral AK
    J Phys Chem Lett; 2015 Jan; 6(2):292-9. PubMed ID: 26263465
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Grain boundary velocity and curvature are not correlated in Ni polycrystals.
    Bhattacharya A; Shen YF; Hefferan CM; Li SF; Lind J; Suter RM; Krill CE; Rohrer GS
    Science; 2021 Oct; 374(6564):189-193. PubMed ID: 34618565
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanical Response of Nanocrystalline Ice-Contained Methane Hydrates: Key Role of Water Ice.
    Cao P; Ning F; Wu J; Cao B; Li T; Sveinsson HA; Liu Z; Vlugt TJH; Hyodo M
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14016-14028. PubMed ID: 32134246
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lowering grain boundary resistance of BaZr(0.8)Y(0.2)O(3-δ) with LiNO3 sintering-aid improves proton conductivity for fuel cell operation.
    Sun Z; Fabbri E; Bi L; Traversa E
    Phys Chem Chem Phys; 2011 May; 13(17):7692-700. PubMed ID: 21103585
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recrystallisation behaviour of a fully austenitic Nb-stabilised stainless steel.
    Barcellini C; Dumbill S; Jimenez-Melero E
    J Microsc; 2019 Apr; 274(1):3-12. PubMed ID: 30561019
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interface proximity effects on ionic conductivity in nanoscale oxide-ion conducting yttria stabilized zirconia: an atomistic simulation study.
    Sankaranarayanan SK; Ramanathan S
    J Chem Phys; 2011 Feb; 134(6):064703. PubMed ID: 21322717
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Significant reduction in hydration energy for yttria stabilized zirconia grain boundaries and the consequences for proton conduction.
    Dawson JA; Tanaka I
    Langmuir; 2014 Sep; 30(34):10456-64. PubMed ID: 25105345
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Samples of Ba
    Dudek M; Lis B; Lach R; Daugėla S; Šalkus T; Kežionis A; Mosiałek M; Sitarz M; Rapacz-Kmita A; Grzywacz P
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32316311
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antagonist effects of grain boundaries between the trapping process and the fast diffusion path in nickel bicrystals.
    Li J; Hallil A; Metsue A; Oudriss A; Bouhattate J; Feaugas X
    Sci Rep; 2021 Jul; 11(1):15533. PubMed ID: 34330936
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Advanced Fuel Cell Based on Perovskite La-SrTiO
    Chen G; Zhu B; Deng H; Luo Y; Sun W; Liu H; Zhang W; Wang X; Qian Y; Hu X; Geng S; Kim JS
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33179-33186. PubMed ID: 30199221
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.
    Belousov VV
    Acc Chem Res; 2017 Feb; 50(2):273-280. PubMed ID: 28186402
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites.
    Adhyaksa GWP; Brittman S; Āboliņš H; Lof A; Li X; Keelor JD; Luo Y; Duevski T; Heeren RMA; Ellis SR; Fenning DP; Garnett EC
    Adv Mater; 2018 Dec; 30(52):e1804792. PubMed ID: 30368936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.