These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29357288)

  • 21. Organ-on-a-chip technology and microfluidic whole-body models for pharmacokinetic drug toxicity screening.
    Lee JB; Sung JH
    Biotechnol J; 2013 Nov; 8(11):1258-66. PubMed ID: 24038956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug permeability assay using microhole-trapped cells in a microfluidic device.
    Yeon JH; Park JK
    Anal Chem; 2009 Mar; 81(5):1944-51. PubMed ID: 19203200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications.
    Daniele MA; Boyd DA; Adams AA; Ligler FS
    Adv Healthc Mater; 2015 Jan; 4(1):11-28. PubMed ID: 24853649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of microfluidic technologies to human assisted reproduction.
    Smith GD; Takayama S
    Mol Hum Reprod; 2017 Apr; 23(4):257-268. PubMed ID: 28130394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic Platforms for Real-Time In Situ Monitoring of Biomarkers for Cellular Processes.
    Lou C; Yang H; Hou Y; Huang H; Qiu J; Wang C; Sang Y; Liu H; Han L
    Adv Mater; 2024 Feb; 36(6):e2307051. PubMed ID: 37844125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction.
    Nieskens TT; Wilmer MJ
    Eur J Pharmacol; 2016 Nov; 790():46-56. PubMed ID: 27401035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Making Microfluidic Devices that Simulate Phloem Transport.
    Comtet J
    Methods Mol Biol; 2019; 2014():397-408. PubMed ID: 31197811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Opportunities for microfluidic technologies in synthetic biology.
    Gulati S; Rouilly V; Niu X; Chappell J; Kitney RI; Edel JB; Freemont PS; deMello AJ
    J R Soc Interface; 2009 Aug; 6 Suppl 4(Suppl 4):S493-506. PubMed ID: 19474079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advanced Microfluidic Vascularized Tissues as Platform for the Study of Human Diseases and Drug Development.
    Noorani B; Cucullo L; Ahn Y; Kadry H; Bhalerao A; Raut S; Nozohouri E; Chowdhury EA
    Curr Neuropharmacol; 2023; 21(3):599-620. PubMed ID: 35794768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of contact angles and capillary dimensions on the burst frequency of super hydrophilic and hydrophilic centrifugal microfluidic platforms, a CFD study.
    Kazemzadeh A; Ganesan P; Ibrahim F; He S; Madou MJ
    PLoS One; 2013; 8(9):e73002. PubMed ID: 24069169
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs.
    Singh M; Tong Y; Webster K; Cesewski E; Haring AP; Laheri S; Carswell B; O'Brien TJ; Aardema CH; Senger RS; Robertson JL; Johnson BN
    Lab Chip; 2017 Jul; 17(15):2561-2571. PubMed ID: 28632265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents.
    Maschmeyer I; Lorenz AK; Schimek K; Hasenberg T; Ramme AP; Hübner J; Lindner M; Drewell C; Bauer S; Thomas A; Sambo NS; Sonntag F; Lauster R; Marx U
    Lab Chip; 2015 Jun; 15(12):2688-99. PubMed ID: 25996126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymer microfabrication technologies for microfluidic systems.
    Becker H; Gärtner C
    Anal Bioanal Chem; 2008 Jan; 390(1):89-111. PubMed ID: 17989961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How Can Microfluidic and Microfabrication Approaches Make Experiments More Physiologically Relevant?
    Sohn LL; Schwille P; Hierlemann A; Tay S; Samitier J; Fu J; Loskill P
    Cell Syst; 2020 Sep; 11(3):209-211. PubMed ID: 32888419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomimetic tissues on a chip for drug discovery.
    Ghaemmaghami AM; Hancock MJ; Harrington H; Kaji H; Khademhosseini A
    Drug Discov Today; 2012 Feb; 17(3-4):173-81. PubMed ID: 22094245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent progress in the physics of microfluidics and related biotechnological applications.
    Tabeling P
    Curr Opin Biotechnol; 2014 Feb; 25():129-34. PubMed ID: 24484891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stable biphasic interfaces for open microfluidic platforms.
    Lee UN; Berthier J; Yu J; Berthier E; Theberge AB
    Biomed Microdevices; 2019 Feb; 21(1):16. PubMed ID: 30747285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling.
    Wang C; Yu C
    Nanotechnology; 2015 Mar; 26(9):092001. PubMed ID: 25676092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.