BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 29357464)

  • 1. Beyond the labeled line: variation in visual reference frames from intraparietal cortex to frontal eye fields and the superior colliculus.
    Caruso VC; Pages DS; Sommer MA; Groh JM
    J Neurophysiol; 2018 Apr; 119(4):1411-1421. PubMed ID: 29357464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compensating for a shifting world: evolving reference frames of visual and auditory signals across three multimodal brain areas.
    Caruso VC; Pages DS; Sommer MA; Groh JM
    J Neurophysiol; 2021 Jul; 126(1):82-94. PubMed ID: 33852803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic reference frames of superior colliculus visuomotor receptive fields during head-unrestrained gaze shifts.
    DeSouza JF; Keith GP; Yan X; Blohm G; Wang H; Crawford JD
    J Neurosci; 2011 Dec; 31(50):18313-26. PubMed ID: 22171035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impairment but not abolishment of express saccades after unilateral or bilateral inactivation of the frontal eye fields.
    Dash S; Peel TR; Lomber SG; Corneil BD
    J Neurophysiol; 2020 May; 123(5):1907-1919. PubMed ID: 32267202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements.
    Ferraina S; Paré M; Wurtz RH
    J Neurophysiol; 2002 Feb; 87(2):845-58. PubMed ID: 11826051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus.
    Mullette-Gillman OA; Cohen YE; Groh JM
    J Neurophysiol; 2005 Oct; 94(4):2331-52. PubMed ID: 15843485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccades to somatosensory targets. III. eye-position-dependent somatosensory activity in primate superior colliculus.
    Groh JM; Sparks DL
    J Neurophysiol; 1996 Jan; 75(1):439-53. PubMed ID: 8822569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontal Eye Field Inactivation Reduces Saccade Preparation in the Superior Colliculus but Does Not Alter How Preparatory Activity Relates to Saccades of a Given Latency.
    Dash S; Peel TR; Lomber SG; Corneil BD
    eNeuro; 2018; 5(2):. PubMed ID: 29766038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progression in neuronal processing for saccadic eye movements from parietal cortex area lip to superior colliculus.
    Paré M; Wurtz RH
    J Neurophysiol; 2001 Jun; 85(6):2545-62. PubMed ID: 11387400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals.
    Jay MF; Sparks DL
    J Neurophysiol; 1987 Jan; 57(1):35-55. PubMed ID: 3559680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2000 Apr; 83(4):1979-2001. PubMed ID: 10758109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor-related signals in the intraparietal cortex encode locations in a hybrid, rather than eye-centered reference frame.
    Mullette-Gillman OA; Cohen YE; Groh JM
    Cereb Cortex; 2009 Aug; 19(8):1761-75. PubMed ID: 19068491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2004 Mar; 91(3):1381-402. PubMed ID: 14573558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of macaque lateral intraparietal area delays initiation of the second saccade predominantly from contralesional eye positions in a double-saccade task.
    Li CS; Andersen RA
    Exp Brain Res; 2001 Mar; 137(1):45-57. PubMed ID: 11310171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural mechanisms underlying target selection with saccadic eye movements.
    Schiller PH; Tehovnik EJ
    Prog Brain Res; 2005; 149():157-71. PubMed ID: 16226583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurons in the supplementary eye field of rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system.
    Russo GS; Bruce CJ
    J Neurophysiol; 1996 Aug; 76(2):825-48. PubMed ID: 8871203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frontal eye field activity preceding aurally guided saccades.
    Russo GS; Bruce CJ
    J Neurophysiol; 1994 Mar; 71(3):1250-3. PubMed ID: 8201415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory signals evolve from hybrid- to eye-centered coordinates in the primate superior colliculus.
    Lee J; Groh JM
    J Neurophysiol; 2012 Jul; 108(1):227-42. PubMed ID: 22514295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distributions of Visual Receptive Fields from Retinotopic to Craniotopic Coordinates in the Lateral Intraparietal Area and Frontal Eye Fields of the Macaque.
    Yang L; Jin M; Zhang C; Qian N; Zhang M
    Neurosci Bull; 2024 Feb; 40(2):171-181. PubMed ID: 37573519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual feature tuning of superior colliculus neural reafferent responses after fixational microsaccades.
    Khademi F; Chen CY; Hafed ZM
    J Neurophysiol; 2020 Jun; 123(6):2136-2153. PubMed ID: 32347160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.