BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 29357477)

  • 1. Emergent coordination underlying learning to reach to grasp with a brain-machine interface.
    Vaidya M; Balasubramanian K; Southerland J; Badreldin I; Eleryan A; Shattuck K; Gururangan S; Slutzky M; Osborne L; Fagg A; Oweiss K; Hatsopoulos NG
    J Neurophysiol; 2018 Apr; 119(4):1291-1304. PubMed ID: 29357477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning to control a brain-machine interface for reaching and grasping by primates.
    Carmena JM; Lebedev MA; Crist RE; O'Doherty JE; Santucci DM; Dimitrov DF; Patil PG; Henriquez CS; Nicolelis MA
    PLoS Biol; 2003 Nov; 1(2):E42. PubMed ID: 14624244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in cortical network connectivity with long-term brain-machine interface exposure after chronic amputation.
    Balasubramanian K; Vaidya M; Southerland J; Badreldin I; Eleryan A; Takahashi K; Qian K; Slutzky MW; Fagg AH; Oweiss K; Hatsopoulos NG
    Nat Commun; 2017 Nov; 8(1):1796. PubMed ID: 29180616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal Distribution of Location and Object Effects in Primary Motor Cortex Neurons during Reach-to-Grasp.
    Rouse AG; Schieber MH
    J Neurosci; 2016 Oct; 36(41):10640-10653. PubMed ID: 27733614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encoding of Both Reaching and Grasping Kinematics in Dorsal and Ventral Premotor Cortices.
    Takahashi K; Best MD; Huh N; Brown KA; Tobaa AA; Hatsopoulos NG
    J Neurosci; 2017 Feb; 37(7):1733-1746. PubMed ID: 28077725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous recording of macaque premotor and primary motor cortex neuronal populations reveals different functional contributions to visuomotor grasp.
    Umilta MA; Brochier T; Spinks RL; Lemon RN
    J Neurophysiol; 2007 Jul; 98(1):488-501. PubMed ID: 17329624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding complete reach and grasp actions from local primary motor cortex populations.
    Vargas-Irwin CE; Shakhnarovich G; Yadollahpour P; Mislow JM; Black MJ; Donoghue JP
    J Neurosci; 2010 Jul; 30(29):9659-69. PubMed ID: 20660249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical Control of Virtual Self-Motion Using Task-Specific Subspaces.
    Schroeder KE; Perkins SM; Wang Q; Churchland MM
    J Neurosci; 2022 Jan; 42(2):220-239. PubMed ID: 34716229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural population dynamics in motor cortex are different for reach and grasp.
    Suresh AK; Goodman JM; Okorokova EV; Kaufman M; Hatsopoulos NG; Bensmaia SJ
    Elife; 2020 Nov; 9():. PubMed ID: 33200745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signaling of grasp dimension and grasp force in dorsal premotor cortex and primary motor cortex neurons during reach to grasp in the monkey.
    Hendrix CM; Mason CR; Ebner TJ
    J Neurophysiol; 2009 Jul; 102(1):132-45. PubMed ID: 19403752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operant conditioning of a multiple degree-of-freedom brain-machine interface in a primate model of amputation.
    Balasubramanian K; Southerland J; Vaidya M; Qian K; Eleryan A; Fagg AH; Sluzky M; Oweiss K; Hatsopoulos N
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():303-6. PubMed ID: 24109684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergent coordination with a brain-machine interface: implications for the neural basis of motor learning.
    Mangalam M
    J Neurophysiol; 2018 Sep; 120(3):889-892. PubMed ID: 29924714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Information analysis on neural tuning in dorsal premotor cortex for reaching and grasping.
    Cao Y; Hao Y; Liao Y; Xu K; Wang Y; Zhang S; Zhang Q; Chen W; Zheng X
    Comput Math Methods Med; 2013; 2013():730374. PubMed ID: 23781275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical modulations increase in early sessions with brain-machine interface.
    Zacksenhouse M; Lebedev MA; Carmena JM; O'Doherty JE; Henriquez C; Nicolelis MA
    PLoS One; 2007 Jul; 2(7):e619. PubMed ID: 17637835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An automated behavioral apparatus to combine parameterized reaching and grasping movements in 3D space.
    Chen J; Hao Y; Zhang S; Sun G; Xu K; Chen W; Zheng X
    J Neurosci Methods; 2019 Jan; 312():139-147. PubMed ID: 30502371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Causal network in a deafferented non-human primate brain.
    Balasubramanian K; Takahashi K; Hatsopoulos NG
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():59-62. PubMed ID: 26736200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of primate magnocellular red nucleus neurons in controlling hand preshaping during reaching to grasp.
    van Kan PL; McCurdy ML
    J Neurophysiol; 2001 Apr; 85(4):1461-78. PubMed ID: 11287470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials.
    Bansal AK; Truccolo W; Vargas-Irwin CE; Donoghue JP
    J Neurophysiol; 2012 Mar; 107(5):1337-55. PubMed ID: 22157115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurons in Primary Motor Cortex Encode Hand Orientation in a Reach-to-Grasp Task.
    Ma C; Ma X; Fan J; He J
    Neurosci Bull; 2017 Aug; 33(4):383-395. PubMed ID: 28389871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A behavioral paradigm for cortical control of a robotic actuator by freely moving rats in a one-dimensional two-target reaching task.
    Zaidi SMT; Kocatürk S; Baykaş T; Kocatürk M
    J Neurosci Methods; 2022 May; 373():109555. PubMed ID: 35271875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.