BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 29357789)

  • 1. Current State of In vitro Cell-Based Renal Models.
    Gozalpour E; Fenner KS
    Curr Drug Metab; 2018; 19(4):310-326. PubMed ID: 29357789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction.
    Nieskens TT; Wilmer MJ
    Eur J Pharmacol; 2016 Nov; 790():46-56. PubMed ID: 27401035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug transporter expression profiling in a three-dimensional kidney proximal tubule in vitro nephrotoxicity model.
    Diekjürgen D; Grainger DW
    Pflugers Arch; 2018 Sep; 470(9):1311-1323. PubMed ID: 29744639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment.
    Jang KJ; Mehr AP; Hamilton GA; McPartlin LA; Chung S; Suh KY; Ingber DE
    Integr Biol (Camb); 2013 Sep; 5(9):1119-29. PubMed ID: 23644926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nephrotoxicity and Kidney Transport Assessment on 3D Perfused Proximal Tubules.
    Vormann MK; Gijzen L; Hutter S; Boot L; Nicolas A; van den Heuvel A; Vriend J; Ng CP; Nieskens TTG; van Duinen V; de Wagenaar B; Masereeuw R; Suter-Dick L; Trietsch SJ; Wilmer M; Joore J; Vulto P; Lanz HL
    AAPS J; 2018 Aug; 20(5):90. PubMed ID: 30109442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening of Drug-Transporter Interactions in a 3D Microfluidic Renal Proximal Tubule on a Chip.
    Vriend J; Nieskens TTG; Vormann MK; van den Berge BT; van den Heuvel A; Russel FGM; Suter-Dick L; Lanz HL; Vulto P; Masereeuw R; Wilmer MJ
    AAPS J; 2018 Jul; 20(5):87. PubMed ID: 30051196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple method for the isolation and detailed characterization of primary human proximal tubule cells for renal replacement therapy.
    Sánchez-Romero N; Martínez-Gimeno L; Caetano-Pinto P; Saez B; Sánchez-Zalabardo JM; Masereeuw R; Giménez I
    Int J Artif Organs; 2020 Jan; 43(1):45-57. PubMed ID: 31385550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human embryonic stem cells differentiate into functional renal proximal tubular-like cells.
    Narayanan K; Schumacher KM; Tasnim F; Kandasamy K; Schumacher A; Ni M; Gao S; Gopalan B; Zink D; Ying JY
    Kidney Int; 2013 Apr; 83(4):593-603. PubMed ID: 23389418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional spheroid culture induces apical-basal polarity and the original characteristics of immortalized human renal proximal tubule epithelial cells.
    Mizuguchi K; Aoki H; Aoyama M; Kawaguchi Y; Waguri-Nagaya Y; Ohte N; Asai K
    Exp Cell Res; 2021 Jul; 404(1):112630. PubMed ID: 33971195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a microphysiological model of human kidney proximal tubule function.
    Weber EJ; Chapron A; Chapron BD; Voellinger JL; Lidberg KA; Yeung CK; Wang Z; Yamaura Y; Hailey DW; Neumann T; Shen DD; Thummel KE; Muczynski KA; Himmelfarb J; Kelly EJ
    Kidney Int; 2016 Sep; 90(3):627-37. PubMed ID: 27521113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RPTEC/TERT1 cells form highly differentiated tubules when cultured in a 3D matrix.
    Secker PF; Luks L; Schlichenmaier N; Dietrich DR
    ALTEX; 2018; 35(2):223-234. PubMed ID: 29197217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human proximal tubule cells form functional microtissues.
    Prange JA; Bieri M; Segerer S; Burger C; Kaech A; Moritz W; Devuyst O
    Pflugers Arch; 2016 Apr; 468(4):739-50. PubMed ID: 26676951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal proximal tubular epithelial cells: review of isolation, characterization, and culturing techniques.
    Mihevc M; Petreski T; Maver U; Bevc S
    Mol Biol Rep; 2020 Dec; 47(12):9865-9882. PubMed ID: 33170426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of easily accessible human kidney tubules on two-dimensional surfaces in vitro.
    Zhang H; Lau SF; Heng BF; Teo PY; Alahakoon PK; Ni M; Tasnim F; Ying JY; Zink D
    J Cell Mol Med; 2011 Jun; 15(6):1287-98. PubMed ID: 20586829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and functional characteristics of cultured renal epithelial cells from uninephrectomized rats: factors influencing nephrotoxicity.
    Lash LH; Putt DA; Zalups RK
    J Pharmacol Exp Ther; 2001 Feb; 296(2):243-51. PubMed ID: 11160604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a self-organized tubulogenesis model of human renal proximal tubular epithelial cells in vitro.
    Wang X; Guo C; Chen Y; Tozzi L; Szymkowiak S; Li C; Kaplan DL
    J Biomed Mater Res A; 2020 Mar; 108(3):795-804. PubMed ID: 31808276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apical voltage-driven urate efflux transporter NPT4 in renal proximal tubule.
    Jutabha P; Anzai N; Wempe MF; Wakui S; Endou H; Sakurai H
    Nucleosides Nucleotides Nucleic Acids; 2011 Dec; 30(12):1302-11. PubMed ID: 22132991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of physiological shear stress to renal tubular epithelial cells.
    Ferrell N; Sandoval RM; Molitoris BA; Brakeman P; Roy S; Fissell WH
    Methods Cell Biol; 2019; 153():43-67. PubMed ID: 31395384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Extracellular miRNA Determination with Microfluidic 3D Cell Cultures for the Assessment of Nephrotoxicity: a Proof of Concept Study.
    Suter-Dick L; Mauch L; Ramp D; Caj M; Vormann MK; Hutter S; Lanz HL; Vriend J; Masereeuw R; Wilmer MJ
    AAPS J; 2018 Jul; 20(5):86. PubMed ID: 30039346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro systems to study nephropharmacology: 2D versus 3D models.
    Sánchez-Romero N; Schophuizen CM; Giménez I; Masereeuw R
    Eur J Pharmacol; 2016 Nov; 790():36-45. PubMed ID: 27395797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.