BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 29357905)

  • 1. Chromosome-nuclear envelope attachments affect interphase chromosome territories and entanglement.
    Kinney NA; Sharakhov IV; Onufriev AV
    Epigenetics Chromatin; 2018 Jan; 11(1):3. PubMed ID: 29357905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantified effects of chromosome-nuclear envelope attachments on 3D organization of chromosomes.
    Kinney NA; Onufriev AV; Sharakhov IV
    Nucleus; 2015; 6(3):212-24. PubMed ID: 26068134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the chromosome regions with significant affinity for the nuclear envelope in fruit fly--a model based approach.
    Kinney NA; Sharakhov IV; Onufriev AV
    PLoS One; 2014; 9(3):e91943. PubMed ID: 24651400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong interactions between highly dynamic lamina-associated domains and the nuclear envelope stabilize the 3D architecture of Drosophila interphase chromatin.
    Tolokh IS; Kinney NA; Sharakhov IV; Onufriev AV
    Epigenetics Chromatin; 2023 May; 16(1):21. PubMed ID: 37254161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster.
    Marshall WF; Dernburg AF; Harmon B; Agard DA; Sedat JW
    Mol Biol Cell; 1996 May; 7(5):825-42. PubMed ID: 8744953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional Organization of Polytene Chromosomes in Somatic and Germline Tissues of Malaria Mosquitoes.
    George P; Kinney NA; Liang J; Onufriev AV; Sharakhov IV
    Cells; 2020 Feb; 9(2):. PubMed ID: 32024176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Chromomeric organization of interphase chromosomes in Drosophila melanogaster].
    Zhuimulev IF; Beliaeva ES; Zykova TIu; Semeshin VF; Demakov SA; Demakova OV; Goncharov FP; Khoroshko VA; Boldyreva LV; Kokoza EB; Pokholkiova GV
    Tsitologiia; 2013; 55(3):144-7. PubMed ID: 23795454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Condensin II promotes the formation of chromosome territories by inducing axial compaction of polyploid interphase chromosomes.
    Bauer CR; Hartl TA; Bosco G
    PLoS Genet; 2012; 8(8):e1002873. PubMed ID: 22956908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Similarity in replication timing between polytene and diploid cells is associated with the organization of the Drosophila genome.
    Kolesnikova TD; Goncharov FP; Zhimulev IF
    PLoS One; 2018; 13(4):e0195207. PubMed ID: 29659604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Attachment of polytene chromosomes to the nuclear envelope in ovarian pseudonurse cells in Drosophila melanogaster].
    Sharakhov IV; Vasserlauf IE; StegniÄ­ VN
    Genetika; 1997 Feb; 33(2):189-95. PubMed ID: 9162695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable Chromosome Condensation Revealed by Chromosome Conformation Capture.
    Eagen KP; Hartl TA; Kornberg RD
    Cell; 2015 Nov; 163(4):934-46. PubMed ID: 26544940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Banding Pattern of Polytene Chromosomes as a Representation of Universal Principles of Chromatin Organization into Topological Domains.
    Kolesnikova TD
    Biochemistry (Mosc); 2018 Apr; 83(4):338-349. PubMed ID: 29626921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein composition of interband regions in polytene and cell line chromosomes of Drosophila melanogaster.
    Demakov SA; Vatolina TY; Babenko VN; Semeshin VF; Belyaeva ES; Zhimulev IF
    BMC Genomics; 2011 Nov; 12():566. PubMed ID: 22093916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional organization of Drosophila melanogaster interphase nuclei. II. Chromosome spatial organization and gene regulation.
    Hochstrasser M; Sedat JW
    J Cell Biol; 1987 Jun; 104(6):1471-83. PubMed ID: 3108265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Banding patterns in Drosophila melanogaster polytene chromosomes correlate with DNA-binding protein occupancy.
    Zhimulev IF; Belyaeva ES; Vatolina TY; Demakov SA
    Bioessays; 2012 Jun; 34(6):498-508. PubMed ID: 22419120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The arrangement of Brachypodium distachyon chromosomes in interphase nuclei.
    Robaszkiewicz E; Idziak-Helmcke D; Tkacz MA; Chrominski K; Hasterok R
    J Exp Bot; 2016 Oct; 67(18):5571-5583. PubMed ID: 27588463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-farnesylated B-type lamin can tether chromatin inside the nucleus and its chromatin interaction requires the Ig-fold region.
    Uchino R; Sugiyama S; Katagiri M; Chuman Y; Furukawa K
    Chromosoma; 2017 Feb; 126(1):125-144. PubMed ID: 26892013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Condensins exert force on chromatin-nuclear envelope tethers to mediate nucleoplasmic reticulum formation in Drosophila melanogaster.
    Bozler J; Nguyen HQ; Rogers GC; Bosco G
    G3 (Bethesda); 2014 Dec; 5(3):341-52. PubMed ID: 25552604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization.
    Knoch TA
    Results Probl Cell Differ; 2022; 70():495-549. PubMed ID: 36348120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.