These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 29358390)

  • 1. Frequency modulation of neural oscillations according to visual task demands.
    Wutz A; Melcher D; Samaha J
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):1346-1351. PubMed ID: 29358390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Oscillatory Phase in Determining the Temporal Organization of Perception: Evidence from Sensory Entrainment.
    Ronconi L; Melcher D
    J Neurosci; 2017 Nov; 37(44):10636-10644. PubMed ID: 28972130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Speed of Alpha-Band Oscillations Predicts the Temporal Resolution of Visual Perception.
    Samaha J; Postle BR
    Curr Biol; 2015 Nov; 25(22):2985-90. PubMed ID: 26526370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct oscillatory patterns differentiate between segregation and integration processes in perceptual grouping.
    Costa GN; Schaum M; Duarte JV; Martins R; Duarte IC; Castelhano J; Wibral M; Castelo-Branco M
    Hum Brain Mapp; 2024 Aug; 45(12):e26779. PubMed ID: 39185735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond alpha band: prestimulus local oscillation and interregional synchrony of the beta band shape the temporal perception of the audiovisual beep-flash stimulus.
    Jiang Z; An X; Liu S; Yin E; Yan Y; Ming D
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 37419108
    [No Abstract]   [Full Text] [Related]  

  • 6. Individual Alpha Peak Frequency Predicts 10 Hz Flicker Effects on Selective Attention.
    Gulbinaite R; van Viegen T; Wieling M; Cohen MX; VanRullen R
    J Neurosci; 2017 Oct; 37(42):10173-10184. PubMed ID: 28931569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting Unattended Stimuli Depends on the Phase of Prestimulus Neural Oscillations.
    Harris AM; Dux PE; Mattingley JB
    J Neurosci; 2018 Mar; 38(12):3092-3101. PubMed ID: 29459372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Attention Tunes Temporal Processing in Early Visual Cortex by Speeding and Slowing Alpha Oscillations.
    Sharp P; Gutteling T; Melcher D; Hickey C
    J Neurosci; 2022 Oct; 42(41):7824-7832. PubMed ID: 36100397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testing the effect of tACS over parietal cortex in modulating endogenous alpha rhythm and temporal integration windows in visual perception.
    Ronconi L; Melcher D; Junghöfer M; Wolters CH; Busch NA
    Eur J Neurosci; 2022 Jun; 55(11-12):3438-3450. PubMed ID: 33098112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention.
    Lobier M; Palva JM; Palva S
    Neuroimage; 2018 Jan; 165():222-237. PubMed ID: 29074278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. No Evidence for Entrainment: Endogenous Gamma Oscillations and Rhythmic Flicker Responses Coexist in Visual Cortex.
    Duecker K; Gutteling TP; Herrmann CS; Jensen O
    J Neurosci; 2021 Aug; 41(31):6684-6698. PubMed ID: 34230106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory Drive Modifies Brain Dynamics and the Temporal Integration Window.
    Karvat G; Ofir N; Landau AN
    J Cogn Neurosci; 2024 Apr; 36(4):614-631. PubMed ID: 38010294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prestimulus oscillatory phase at 7 Hz gates cortical information flow and visual perception.
    Hanslmayr S; Volberg G; Wimber M; Dalal SS; Greenlee MW
    Curr Biol; 2013 Nov; 23(22):2273-2278. PubMed ID: 24184106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Role for Bottom-Up Alpha Oscillations in Temporal Integration.
    Karvat G; Landau AN
    J Cogn Neurosci; 2024 Apr; 36(4):632-639. PubMed ID: 37713671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Top-down alpha oscillatory network interactions during visuospatial attention orienting.
    Doesburg SM; Bedo N; Ward LM
    Neuroimage; 2016 May; 132():512-519. PubMed ID: 26952198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhythmic Information Sampling in the Brain during Visual Recognition.
    Caplette L; Jerbi K; Gosselin F
    J Neurosci; 2023 Jun; 43(24):4487-4497. PubMed ID: 37160361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.
    Daume J; Gruber T; Engel AK; Friese U
    J Neurosci; 2017 Jan; 37(2):313-322. PubMed ID: 28077711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connecting occipital alpha band peak frequency, visual temporal resolution, and occipital GABA levels in healthy participants and hepatic encephalopathy patients.
    Baumgarten TJ; Neugebauer J; Oeltzschner G; Füllenbach ND; Kircheis G; Häussinger D; Lange J; Wittsack HJ; Butz M; Schnitzler A
    Neuroimage Clin; 2018; 20():347-356. PubMed ID: 30109194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency alternating current stimulation rhythmically suppresses gamma-band oscillations and impairs perceptual performance.
    Herring JD; Esterer S; Marshall TR; Jensen O; Bergmann TO
    Neuroimage; 2019 Jan; 184():440-449. PubMed ID: 30243972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparatory α-band oscillations reflect spatial gating independently of predictions regarding target identity.
    Wildegger T; van Ede F; Woolrich M; Gillebert CR; Nobre AC
    J Neurophysiol; 2017 Mar; 117(3):1385-1394. PubMed ID: 28077669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.