These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29358626)

  • 21. Piezoelectric tuning of narrowband perfect plasmonic absorbers via an optomechanic cavity.
    Yang A; Yang K; Yu H; Tan X; Li J; Zhou L; Liu H; Song H; Tang J; Liu F; Zhu AY; Guo Q; Yi F
    Opt Lett; 2016 Jun; 41(12):2803-6. PubMed ID: 27304293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anti-Hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale.
    Zhang S; Ye Z; Wang Y; Park Y; Bartal G; Mrejen M; Yin X; Zhang X
    Phys Rev Lett; 2012 Nov; 109(19):193902. PubMed ID: 23215385
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic Wavelength-Tunable Photodetector Using Subwavelength Graphene Field-Effect Transistors.
    Léonard F; Spataru CD; Goldflam M; Peters DW; Beechem TE
    Sci Rep; 2017 Apr; 8():45873. PubMed ID: 28374842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultra-Broadband Directional Scattering by Colloidally Lithographed High-Index Mie Resonant Oligomers and Their Energy-Harvesting Applications.
    Zhang Y; Xu Y; Chen S; Lu H; Chen K; Cao Y; Miroshnichenko AE; Gu M; Li X
    ACS Appl Mater Interfaces; 2018 May; 10(19):16776-16782. PubMed ID: 29682955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of optical antennas on active optoelectronic devices.
    Bonakdar A; Mohseni H
    Nanoscale; 2014 Oct; 6(19):10961-74. PubMed ID: 25139058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimizing plasmonic nanoantennas via coordinated multiple coupling.
    Lin L; Zheng Y
    Sci Rep; 2015 Oct; 5():14788. PubMed ID: 26423015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High performance broadband photodetector using fabricated nanowires of bismuth selenide.
    Sharma A; Bhattacharyya B; Srivastava AK; Senguttuvan TD; Husale S
    Sci Rep; 2016 Jan; 6():19138. PubMed ID: 26751499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces.
    Pala RA; Butun S; Aydin K; Atwater HA
    Sci Rep; 2016 Sep; 6():31451. PubMed ID: 27641965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-resonant metamaterials based on UT-shaped nano-aperture antennas.
    Turkmen M; Aksu S; Çetin AE; Yanik AA; Altug H
    Opt Express; 2011 Apr; 19(8):7921-8. PubMed ID: 21503104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vector diffraction from subwavelength optical disk structures: two-dimensional modeling of near-field profiles, far-field intensities, and detector signals from a DVD.
    Liu WC; Kowarz MW
    Appl Opt; 1999 Jun; 38(17):3787-97. PubMed ID: 18319986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light localization, photon sorting, and enhanced absorption in subwavelength cavity arrays.
    Lansey E; Hooper IR; Gollub JN; Hibbins AP; Crouse DT
    Opt Express; 2012 Oct; 20(22):24226-36. PubMed ID: 23187185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mimicking Faraday rotation to sort the orbital angular momentum of light.
    Zhang W; Qi Q; Zhou J; Chen L
    Phys Rev Lett; 2014 Apr; 112(15):153601. PubMed ID: 24785038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybridized nanocavities as single-polarized plasmonic antennas.
    Yanik AA; Adato R; Erramilli S; Altug H
    Opt Express; 2009 Nov; 17(23):20900-10. PubMed ID: 19997327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Channel plasmon subwavelength waveguide components including interferometers and ring resonators.
    Bozhevolnyi SI; Volkov VS; Devaux E; Laluet JY; Ebbesen TW
    Nature; 2006 Mar; 440(7083):508-11. PubMed ID: 16554814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths.
    You L; Wu J; Xu Y; Hou X; Fang W; Li H; Zhang W; Zhang L; Liu X; Tong L; Wang Z; Xie X
    Opt Express; 2017 Dec; 25(25):31221-31229. PubMed ID: 29245799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solution-Processed Gold Nanorods Integrated with Graphene for Near-Infrared Photodetection via Hot Carrier Injection.
    Xia Z; Li P; Wang Y; Song T; Zhang Q; Sun B
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24136-41. PubMed ID: 26468669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial.
    Xu T; Lezec HJ
    Nat Commun; 2014 Jun; 5():4141. PubMed ID: 24936801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photodetection with active optical antennas.
    Knight MW; Sobhani H; Nordlander P; Halas NJ
    Science; 2011 May; 332(6030):702-4. PubMed ID: 21551059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resource efficient plasmon-based 2D-photovoltaics with reflective support.
    Hägglund C; Apell SP
    Opt Express; 2010 Sep; 18 Suppl 3():A343-56. PubMed ID: 21165065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New Triplet Sensitization Routes for Photon Upconversion: Thermally Activated Delayed Fluorescence Molecules, Inorganic Nanocrystals, and Singlet-to-Triplet Absorption.
    Yanai N; Kimizuka N
    Acc Chem Res; 2017 Oct; 50(10):2487-2495. PubMed ID: 28930435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.