These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 29358641)
1. An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration. Qian Y; Zhao X; Han Q; Chen W; Li H; Yuan W Nat Commun; 2018 Jan; 9(1):323. PubMed ID: 29358641 [TBL] [Abstract][Full Text] [Related]
2. Mussel shell-derived pro-regenerative scaffold with conductive porous multi-scale-patterned microenvironment for spinal cord injury repair. Yin W; Yang C; Liu D; Cha S; Cai L; Ye G; Song X; Zhang J; Qiu X Biomed Mater; 2024 Apr; 19(3):. PubMed ID: 38626779 [TBL] [Abstract][Full Text] [Related]
3. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Wang J; Cheng Y; Chen L; Zhu T; Ye K; Jia C; Wang H; Zhu M; Fan C; Mo X Acta Biomater; 2019 Jan; 84():98-113. PubMed ID: 30471474 [TBL] [Abstract][Full Text] [Related]
4. Highly aligned electroactive ultrafine fibers promote the differentiation of mesenchymal stem cells into Schwann-like cells for nerve regeneration. Wei S; Xiong F; Gu H; Zhang Z; Xuan H; Jin Y; Xue Y; Li B; Feng W; Yuan H Int J Biol Macromol; 2024 Nov; 279(Pt 4):135388. PubMed ID: 39255892 [TBL] [Abstract][Full Text] [Related]
5. Noncovalent Bonding of RGD and YIGSR to an Electrospun Poly(ε-Caprolactone) Conduit through Peptide Self-Assembly to Synergistically Promote Sciatic Nerve Regeneration in Rats. Zhu L; Wang K; Ma T; Huang L; Xia B; Zhu S; Yang Y; Liu Z; Quan X; Luo K; Kong D; Huang J; Luo Z Adv Healthc Mater; 2017 Apr; 6(8):. PubMed ID: 28140528 [TBL] [Abstract][Full Text] [Related]
7. Electrospun silk-polyaniline conduits for functional nerve regeneration in rat sciatic nerve injury model. Das S; Sharma M; Saharia D; Sarma KK; Muir EM; Bora U Biomed Mater; 2017 Aug; 12(4):045025. PubMed ID: 28632137 [TBL] [Abstract][Full Text] [Related]
8. Graphdiyne-loaded polycaprolactone nanofiber scaffold for peripheral nerve regeneration. Li X; He N; Li X; Wang X; Zhan L; Yuan WE; Song J; Ouyang Y J Colloid Interface Sci; 2023 Sep; 646():399-412. PubMed ID: 37207422 [TBL] [Abstract][Full Text] [Related]
9. Aligned Graphene Mesh-Supported Double Network Natural Hydrogel Conduit Loaded with Netrin-1 for Peripheral Nerve Regeneration. Huang Q; Cai Y; Zhang X; Liu J; Liu Z; Li B; Wong H; Xu F; Sheng L; Sun D; Qin J; Luo Z; Lu X ACS Appl Mater Interfaces; 2021 Jan; 13(1):112-122. PubMed ID: 33397079 [TBL] [Abstract][Full Text] [Related]
10. Reduced graphene oxide-GelMA-PCL hybrid nanofibers for peripheral nerve regeneration. Fang X; Guo H; Zhang W; Fang H; Li Q; Bai S; Zhang P J Mater Chem B; 2020 Dec; 8(46):10593-10601. PubMed ID: 33135715 [TBL] [Abstract][Full Text] [Related]
11. Use new PLGL-RGD-NGF nerve conduits for promoting peripheral nerve regeneration. Yan Q; Yin Y; Li B Biomed Eng Online; 2012 Jul; 11():36. PubMed ID: 22776032 [TBL] [Abstract][Full Text] [Related]
12. Polydopamine-coated polycaprolactone/carbon nanotube fibrous scaffolds loaded with brain-derived neurotrophic factor for peripheral nerve regeneration. Pi W; Zhang Y; Li L; Li C; Zhang M; Zhang W; Cai Q; Zhang P Biofabrication; 2022 Apr; 14(3):. PubMed ID: 35193120 [TBL] [Abstract][Full Text] [Related]
13. Efficacy of 3D printed anatomically equivalent thermoplastic polyurethane guide conduits in promoting the regeneration of critical-sized peripheral nerve defects. Zennifer A; Chellappan DR; Chinnaswamy P; Subramanian A; Sundaramurthi D; Sethuraman S Biofabrication; 2024 Jul; 16(4):. PubMed ID: 38968935 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
15. PLCL/SF/NGF nerve conduit loaded with RGD-TA-PPY hydrogel promotes regeneration of sciatic nerve defects in rats through PI3K/AKT signalling pathways. Liu K; Tang W; Jin S; Hao X; Hu Y; Zhou T; Zhou C; Chen G; Cui Y; Liu Q; Zhang Z J Cell Mol Med; 2024 Aug; 28(15):e18544. PubMed ID: 39098996 [TBL] [Abstract][Full Text] [Related]
16. Surface-Anchored Graphene Oxide Nanosheets on Cell-Scale Micropatterned Poly(d,l-lactide- Zhang D; Yao Y; Duan Y; Yu X; Shi H; Nakkala JR; Zuo X; Hong L; Mao Z; Gao C ACS Appl Mater Interfaces; 2020 Feb; 12(7):7915-7930. PubMed ID: 31935055 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and evaluation of porous and conductive nanofibrous scaffolds for nerve tissue engineering. Pooshidani Y; Zoghi N; Rajabi M; Haghbin Nazarpak M; Hassannejad Z J Mater Sci Mater Med; 2021 Apr; 32(4):46. PubMed ID: 33847824 [TBL] [Abstract][Full Text] [Related]
18. Multifunctional Biodegradable Conductive Hydrogel Regulating Microenvironment for Stem Cell Therapy Enhances the Nerve Tissue Repair. Xu C; Wu P; Yang K; Mu C; Li B; Li X; Wang Z; Liu Z; Wang X; Luo Z Small; 2024 Jun; 20(23):e2309793. PubMed ID: 38148305 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of nerve regeneration through schwann cell-mediated healing in a 3D printed polyacrylonitrile conduit incorporating hydrogel and graphene quantum dots: a study on rat sciatic nerve injury model. Hoveizi E Biomed Mater; 2023 Dec; 19(1):. PubMed ID: 38091624 [TBL] [Abstract][Full Text] [Related]
20. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Huang L; Zhu L; Shi X; Xia B; Liu Z; Zhu S; Yang Y; Ma T; Cheng P; Luo K; Huang J; Luo Z Acta Biomater; 2018 Mar; 68():223-236. PubMed ID: 29274478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]