These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29358662)

  • 1. Network of proteins, enzymes and genes linked to biomass degradation shared by Trichoderma species.
    Horta MAC; Filho JAF; Murad NF; de Oliveira Santos E; Dos Santos CA; Mendes JS; Brandão MM; Azzoni SF; de Souza AP
    Sci Rep; 2018 Jan; 8(1):1341. PubMed ID: 29358662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The synergistic actions of hydrolytic genes reveal the mechanism of Trichoderma harzianum for cellulose degradation.
    Almeida DA; Horta MAC; Ferreira Filho JA; Murad NF; de Souza AP
    J Biotechnol; 2021 Jun; 334():1-10. PubMed ID: 33992696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei.
    Borin GP; Sanchez CC; de Santana ES; Zanini GK; Dos Santos RAC; de Oliveira Pontes A; de Souza AT; Dal'Mas RMMTS; Riaño-Pachón DM; Goldman GH; Oliveira JVC
    BMC Genomics; 2017 Jun; 18(1):501. PubMed ID: 28666414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional profiling of biomass degradation-related genes during Trichoderma reesei growth on different carbon sources.
    Chen X; Luo Y; Yu H; Sun Y; Wu H; Song S; Hu S; Dong Z
    J Biotechnol; 2014 Mar; 173():59-64. PubMed ID: 24445169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of a recombinant swollenin from Trichoderma harzianum in Escherichia coli and its potential synergistic role in biomass degradation.
    Santos CA; Ferreira-Filho JA; O'Donovan A; Gupta VK; Tuohy MG; Souza AP
    Microb Cell Fact; 2017 May; 16(1):83. PubMed ID: 28511724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of genomic regions of Trichoderma harzianum IOC-3844 related to biomass degradation.
    Crucello A; Sforça DA; Horta MA; dos Santos CA; Viana AJ; Beloti LL; de Toledo MA; Vincentz M; Kuroshu RM; de Souza AP
    PLoS One; 2015; 10(4):e0122122. PubMed ID: 25836973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose.
    Fitzpatrick J; Kricka W; James TC; Bond U
    J Appl Microbiol; 2014 Jul; 117(1):96-108. PubMed ID: 24666670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome profile of Trichoderma harzianum IOC-3844 induced by sugarcane bagasse.
    Horta MA; Vicentini R; Delabona Pda S; Laborda P; Crucello A; Freitas S; Kuroshu RM; Polikarpov I; Pradella JG; Souza AP
    PLoS One; 2014; 9(2):e88689. PubMed ID: 24558413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic responses of mixed cultures of ascomycete fungi to lignocellulose using dual RNA-seq reveal inter-species antagonism and limited beneficial effects on CAZyme expression.
    Daly P; van Munster JM; Kokolski M; Sang F; Blythe MJ; Malla S; Velasco de Castro Oliveira J; Goldman GH; Archer DB
    Fungal Genet Biol; 2017 May; 102():4-21. PubMed ID: 27150814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry.
    Ferreira Filho JA; Horta MAC; Beloti LL; Dos Santos CA; de Souza AP
    BMC Genomics; 2017 Oct; 18(1):779. PubMed ID: 29025413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse.
    van den Brink J; Maitan-Alfenas GP; Zou G; Wang C; Zhou Z; Guimarães VM; de Vries RP
    Biotechnol J; 2014 Oct; 9(10):1329-38. PubMed ID: 25116172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression pattern of cellulolytic and xylanolytic genes regulated by transcriptional factors XYR1 and CRE1 are affected by carbon source in Trichoderma reesei.
    Castro Ldos S; Antoniêto AC; Pedersoli WR; Silva-Rocha R; Persinoti GF; Silva RN
    Gene Expr Patterns; 2014 Mar; 14(2):88-95. PubMed ID: 24480777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei.
    Foreman PK; Brown D; Dankmeyer L; Dean R; Diener S; Dunn-Coleman NS; Goedegebuur F; Houfek TD; England GJ; Kelley AS; Meerman HJ; Mitchell T; Mitchinson C; Olivares HA; Teunissen PJ; Yao J; Ward M
    J Biol Chem; 2003 Aug; 278(34):31988-97. PubMed ID: 12788920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.
    Florencio C; Cunha FM; Badino AC; Farinas CS; Ximenes E; Ladisch MR
    Enzyme Microb Technol; 2016 Aug; 90():53-60. PubMed ID: 27241292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MIP diversity from Trichoderma: Structural considerations and transcriptional modulation during mycoparasitic association with Fusarium solani olive trees.
    Ben Amira M; Mom R; Lopez D; Chaar H; Khouaja A; Pujade-Renaud V; Fumanal B; Gousset-Dupont A; Bronner G; Label P; Julien JL; Triki MA; Auguin D; Venisse JS
    PLoS One; 2018; 13(3):e0193760. PubMed ID: 29543834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relation between xyr1 overexpression in Trichoderma harzianum and sugarcane bagasse saccharification performance.
    da Silva Delabona P; Rodrigues GN; Zubieta MP; Ramoni J; Codima CA; Lima DJ; Farinas CS; da Cruz Pradella JG; Seiboth B
    J Biotechnol; 2017 Mar; 246():24-32. PubMed ID: 28192217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species.
    Schmoll M; Dattenböck C; Carreras-Villaseñor N; Mendoza-Mendoza A; Tisch D; Alemán MI; Baker SE; Brown C; Cervantes-Badillo MG; Cetz-Chel J; Cristobal-Mondragon GR; Delaye L; Esquivel-Naranjo EU; Frischmann A; Gallardo-Negrete Jde J; García-Esquivel M; Gomez-Rodriguez EY; Greenwood DR; Hernández-Oñate M; Kruszewska JS; Lawry R; Mora-Montes HM; Muñoz-Centeno T; Nieto-Jacobo MF; Nogueira Lopez G; Olmedo-Monfil V; Osorio-Concepcion M; Piłsyk S; Pomraning KR; Rodriguez-Iglesias A; Rosales-Saavedra MT; Sánchez-Arreguín JA; Seidl-Seiboth V; Stewart A; Uresti-Rivera EE; Wang CL; Wang TF; Zeilinger S; Casas-Flores S; Herrera-Estrella A
    Microbiol Mol Biol Rev; 2016 Mar; 80(1):205-327. PubMed ID: 26864432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secretomic survey of Trichoderma harzianum grown on plant biomass substrates.
    Gómez-Mendoza DP; Junqueira M; do Vale LH; Domont GB; Ferreira Filho EX; Sousa MV; Ricart CA
    J Proteome Res; 2014 Apr; 13(4):1810-22. PubMed ID: 24593137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The protein disulphide isomerase gene of the fungus Trichoderma reesei is induced by endoplasmic reticulum stress and regulated by the carbon source.
    Saloheimo M; Lund M; Penttilä ME
    Mol Gen Genet; 1999 Aug; 262(1):35-45. PubMed ID: 10503534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates.
    Peciulyte A; Anasontzis GE; Karlström K; Larsson PT; Olsson L
    Fungal Genet Biol; 2014 Nov; 72():64-72. PubMed ID: 25093270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.