These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 29358734)

  • 1. Quantitative proteomics identifies redox switches for global translation modulation by mitochondrially produced reactive oxygen species.
    Topf U; Suppanz I; Samluk L; Wrobel L; Böser A; Sakowska P; Knapp B; Pietrzyk MK; Chacinska A; Warscheid B
    Nat Commun; 2018 Jan; 9(1):324. PubMed ID: 29358734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.
    Mailloux RJ; Treberg JR
    Redox Biol; 2016 Aug; 8():110-8. PubMed ID: 26773874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of the specific glutathionylation of mitochondrial proteins in the yeast
    Gergondey R; Garcia C; Marchand CH; Lemaire SD; Camadro JM; Auchère F
    Biochem J; 2017 Mar; 474(7):1175-1193. PubMed ID: 28167699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.
    García-Santamarina S; Boronat S; Hidalgo E
    Biochemistry; 2014 Apr; 53(16):2560-80. PubMed ID: 24738931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly.
    Hinchy EC; Gruszczyk AV; Willows R; Navaratnam N; Hall AR; Bates G; Bright TP; Krieg T; Carling D; Murphy MP
    J Biol Chem; 2018 Nov; 293(44):17208-17217. PubMed ID: 30232152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial stress-dependent regulation of cellular protein synthesis.
    Topf U; Uszczynska-Ratajczak B; Chacinska A
    J Cell Sci; 2019 Apr; 132(8):. PubMed ID: 31028152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using quantitative redox proteomics to dissect the yeast redoxome.
    Brandes N; Reichmann D; Tienson H; Leichert LI; Jakob U
    J Biol Chem; 2011 Dec; 286(48):41893-41903. PubMed ID: 21976664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiol redox proteomics identifies differential targets of cytosolic and mitochondrial glutaredoxin-2 isoforms in Saccharomyces cerevisiae. Reversible S-glutathionylation of DHBP synthase (RIB3).
    McDonagh B; Requejo R; Fuentes-Almagro CA; Ogueta S; Bárcena JA; Padilla CA
    J Proteomics; 2011 Oct; 74(11):2487-97. PubMed ID: 21565288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling.
    Lee J; Giordano S; Zhang J
    Biochem J; 2012 Jan; 441(2):523-40. PubMed ID: 22187934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.
    Dröse S; Brandt U; Wittig I
    Biochim Biophys Acta; 2014 Aug; 1844(8):1344-54. PubMed ID: 24561273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular distribution of glutathione and its dynamic changes under oxidative stress in the yeast Saccharomyces cerevisiae.
    Zechmann B; Liou LC; Koffler BE; Horvat L; Tomašić A; Fulgosi H; Zhang Z
    FEMS Yeast Res; 2011 Dec; 11(8):631-42. PubMed ID: 22093747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae.
    Shenton D; Grant CM
    Biochem J; 2003 Sep; 374(Pt 2):513-9. PubMed ID: 12755685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review: Using isolated mitochondria to investigate mitochondrial hydrogen peroxide metabolism.
    Treberg JR
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 256():110614. PubMed ID: 33965616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TAp73 contributes to the oxidative stress response by regulating protein synthesis.
    Marini A; Rotblat B; Sbarrato T; Niklison-Chirou MV; Knight JRP; Dudek K; Jones C; Bushell M; Knight RA; Amelio I; Willis AE; Melino G
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6219-6224. PubMed ID: 29844156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress induction and mitochondrial localization of Oxr1 proteins in yeast and humans.
    Elliott NA; Volkert MR
    Mol Cell Biol; 2004 Apr; 24(8):3180-7. PubMed ID: 15060142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools.
    James AM; Cochemé HM; Smith RA; Murphy MP
    J Biol Chem; 2005 Jun; 280(22):21295-312. PubMed ID: 15788391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mitochondrial copper chaperone COX11 has an additional role in cellular redox homeostasis.
    Radin I; Kost L; Gey U; Steinebrunner I; Rödel G
    PLoS One; 2021; 16(12):e0261465. PubMed ID: 34919594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.