BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 29358901)

  • 1. Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics.
    Bian Y; Guo F; Yang S; Mao Z; Bachman H; Tang SY; Ren L; Zhang B; Gong J; Guo X; Huang TJ
    Microfluid Nanofluidics; 2017 Aug; 21():. PubMed ID: 29358901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.
    Collins DJ; Devendran C; Ma Z; Ng JW; Neild A; Ai Y
    Sci Adv; 2016 Jul; 2(7):e1600089. PubMed ID: 27453940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid and meshless analytical model of acoustofluidic pressure fields for waveguide design.
    O'Rorke R; Collins D; Ai Y
    Biomicrofluidics; 2018 Mar; 12(2):024104. PubMed ID: 29576835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavity-agnostic acoustofluidic manipulations enabled by guided flexural waves on a membrane acoustic waveguide actuator.
    Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C
    Microsyst Nanoeng; 2024; 10():33. PubMed ID: 38463549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfabricated acoustofluidic membrane acoustic waveguide actuator for highly localized in-droplet dynamic particle manipulation.
    Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C
    Lab Chip; 2023 Mar; 23(7):1865-1878. PubMed ID: 36852544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simplified three-dimensional numerical simulation approach for surface acoustic wave tweezers.
    Liu L; Zhou J; Tan K; Zhang H; Yang X; Duan H; Fu Y
    Ultrasonics; 2022 Sep; 125():106797. PubMed ID: 35780714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves.
    Xu M; Lee PVS; Collins DJ
    Lab Chip; 2021 Dec; 22(1):90-99. PubMed ID: 34860222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enriching Nanoparticles via Acoustofluidics.
    Mao Z; Li P; Wu M; Bachman H; Mesyngier N; Guo X; Liu S; Costanzo F; Huang TJ
    ACS Nano; 2017 Jan; 11(1):603-612. PubMed ID: 28068078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic tweezer with complex boundary-free trapping and transport channel controlled by shadow waveguides.
    Li J; Shen C; Huang TJ; Cummer SA
    Sci Adv; 2021 Aug; 7(34):. PubMed ID: 34407929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open source acoustofluidics.
    Bachman H; Fu H; Huang PH; Tian Z; Embry-Seckler J; Rufo J; Xie Z; Hartman JH; Zhao S; Yang S; Meyer JN; Huang TJ
    Lab Chip; 2019 Jul; 19(14):2404-2414. PubMed ID: 31240285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Aligned Acoustofluidic Particle Focusing and Patterning in Microfluidic Channels from Channel-Based Acoustic Waveguides.
    Collins DJ; O'Rorke R; Devendran C; Ma Z; Han J; Neild A; Ai Y
    Phys Rev Lett; 2018 Feb; 120(7):074502. PubMed ID: 29542954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary-based, multifunctional manipulation of particles and fluids
    Pei Z; Tian Z; Yang S; Shen L; Hao N; Naquin TD; Li T; Sun L; Rong W; Huang TJ
    J Phys D Appl Phys; 2024 Aug; 57(30):. PubMed ID: 38800708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustofluidic patterning in glass capillaries using travelling acoustic waves based on thin film flexible platform.
    Wang Q; Maramizonouz S; Stringer Martin M; Zhang J; Ong HL; Liu Q; Yang X; Rahmati M; Torun H; Ng WP; Wu Q; Binns R; Fu Y
    Ultrasonics; 2024 Jan; 136():107149. PubMed ID: 37703751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-wavelength acoustic stencil for tailored micropatterning.
    Kolesnik K; Segeritz P; Scott DJ; Rajagopal V; Collins DJ
    Lab Chip; 2023 May; 23(10):2447-2457. PubMed ID: 37042175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple acoustofluidic chip for microscale manipulation using evanescent Scholte waves.
    Aubert V; Wunenburger R; Valier-Brasier T; Rabaud D; Kleman JP; Poulain C
    Lab Chip; 2016 Jul; 16(13):2532-9. PubMed ID: 27292590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustofluidic manipulation for submicron to nanoparticles.
    Wei W; Wang Z; Wang B; He X; Wang Y; Bai Y; Yang Q; Pang W; Duan X
    Electrophoresis; 2024 May; ():. PubMed ID: 38794970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic fields and microfluidic patterning around embedded micro-structures subject to surface acoustic waves.
    Collins DJ; O'Rorke R; Neild A; Han J; Ai Y
    Soft Matter; 2019 Nov; 15(43):8691-8705. PubMed ID: 31657435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motile cells as probes for characterizing acoustofluidic devices.
    Kim M; Bayly PV; Meacham JM
    Lab Chip; 2021 Feb; 21(3):521-533. PubMed ID: 33507201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.